• 제목/요약/키워드: orbital

검색결과 1,623건 처리시간 0.029초

안와벽 골절 면적과 이탈된 안와내 조직의 부피에 따른 안구함몰 정도 (Degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue)

  • 장학선;임대호;백진아;신효근;고승오
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권3호
    • /
    • pp.205-213
    • /
    • 2011
  • Introduction: The enlargement and deformation of the orbit give rise to a visible enophthalmos. As a consequence, a disturbance of eye motility together with double images is likely to occur. This study examined the degree of enophthalmos according to the extent of orbital wall fracture and volume of herniated orbital tissue in blowout fractures of the medial and inferior orbital wall. Materials and Methods: This study was performed on patients diagnosed with medial and inferior orbital wall fractures at the Department of Oral and maxillofacial surgery, Chonbuk National University Hospital from 2007 to 2009. The patients' age, gender, etiology of fracture and degree of enophthalmos were investigated. The changes in the degree of enophthalomos, diplopia and ocular motility restriction after operation were examined. Results: The degree of enophthalomos increased with increasing extent of orbital wall fracture and volume of herniated orbital tissue. Conclusion: Whether to perform the operation is decided after measuring the extent of the orbital wall fracture and volume of herniated orbital tissue using computed tomography (CT), time for the decision of operation can be shortened. This can cause a decrease in the complications of orbital wall fractures.

안와내벽파열골절의 내시경적 사골동내 충전에 따른 안와용적 변화 (Orbital Volume Change Resulted from Packing in Ethmoidal Sinus for Correction of Isolated Medial Orbital Fractures)

  • 김경훈;최수종;강철욱;배용찬;남수봉
    • 대한두개안면성형외과학회지
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the medial orbital fractures cannot be enable to confirm the reduction degree of orbital volume without imaging modalities. We have intended through this study to make a quantative analysis of preoperative orbital volume increment and the reduction degree of that after ethmoidal sinus packing by using CT scan. Methods: In this retrospective study, 22 patients were selected to evaluate the postoperative volume reduction, who took 2 CT scans which are pre- and postoperative under the same protocol. The postoperative CT scan was carried out in about 5 days after the operation with the packing inserted into ethmoidal sinus. The length of bony defect on each section was measured by PACS program and the area of defect was calculated by summing lengths on each section multiplied by the thickness of the section. When the outline of orbit on the slice is drawn manually with a cursor, PACS program measures the area automatically. Orbital volume was calculated from the sum of the area multiplied by the section thickness. Results: The mean dimension of fractured walls was $2.86{\pm}0.99cm^2$. The mean orbital volume of the unaffected orbits was $22.89{\pm}2.15cm^3$ and that of the affected orbits was $25.62{\pm}2.82cm^3$. The mean orbital volume increment of the affected orbits was $2.73{\pm}1.13cm^3$. After surgery, the mean orbital volume of the unaffected orbits was $22.46{\pm}2.73cm^3$ and the mean orbital volume decrease on the surgical side was $2.98{\pm}1.07cm^3$. The estimated correction rate was 118.30%. Conclusion: The orbital volume increment in fractured orbit showed linear correlation with the dimension of fractured area. The orbital volume changes after ethmoidal sinus packing also showed linear correlation with orbital volume increment in fractured orbit. This study showed the regressive linear correlation between the increment of orbital volume and the correction rate. To evaluate the maintenance of reduction state, we think that the further study should be done for comparative analysis of orbital volume change after removal of packing.

측두근-오훼돌기 피판을 이용한 안와저의 재건 예 (A CASE REPORT OF ORBITAL FLOOR RECONSTRUCTION WITH TEMPORAL MUSCLE-CORONOID PROCESS FLAP)

  • 이상철;김여갑;류동목;최재용
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제15권1호
    • /
    • pp.1-6
    • /
    • 1993
  • The maxillary squamous cell carcinoma is major part of maxillary malignant tumor. The treatment of maxillary malignancy tumor is the maxillectomy in combination with radiation therapy and chemorherapy. When tumor invasion is occured to the orbit, orbital exenteration is required. But if the periosteum of the orbital floor is intact, the orbit can be preserved. There are many orbital floor reconstruction materials for the prevention of ptosis of the orbital content. The patients on this paper were diagnosised as squamous cell carcinoma on maxilla, we performed the partial maxillectomy including the orbital floor, and we used temporalis muscle-coronoid process flap for the reconstruction of the orbital floor after partial maxillectomy and obtained good esthetic and functional results, as followed. 1. We obtained sufficient flap width for defect of orbital floor. 2. It permits good blood supply and no necessary other donor site. 3. It gives a solid base for the support the globe and the orbital floor. 4. It gives minimal postoperative morphorogical defect and functional disturbance.

  • PDF

Application of 3D Simulation Surgery to Orbital Wall Fracture : A preliminary Case Study

  • Choi, Jong-Woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.16-18
    • /
    • 2014
  • The orbit has a very special anatomical structure. The complex anatomical structure should be restored when we encounter the patient with orbital wall fracture. Unless these specific anatomy were reconstructed well, the patient should suffer from various complications such enophthalmos, diplopia or orbital deformity. In addition, because the patient has a his own specific orbital shape, individualized approach will be necessary. The aim of this trial is to try to restore the original orbit anatomy as possible based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. In order to restore the missing skipped images between the cuts of CT data because of the thinness of the orbital walls, we manipulated the DICOM data for imaging the original orbital contour using the preoperatively manufactured mirror-image of the RP model. And we fabricated Titanium-Medpor to reconstruct three-dimensional orbital structure intraoperatively. This prefabricated Titanium-Medpor was then inserted onto the defected orbital wall and fixed. Three dimensional approach based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Eyeball deviation by orbital mucocele after midface sinus injury

  • Oh, Se Young;Choi, Ji Seon;Lim, Jin Soo;Kim, Min Cheol
    • 대한두개안면성형외과학회지
    • /
    • 제21권1호
    • /
    • pp.53-57
    • /
    • 2020
  • A mucocele is an epithelium-lined, mucus-filled cavity in the paranasal sinuses. Mucocele may develop due to scarring and obstruction of the sinus ostium caused by midface sinus trauma, such as orbital bone fracture or endoscopic sinus surgery. The authors report two cases of orbital mucocele as complications following midface sinus injury (endoscopic sinus surgery in one case, and orbital fracture repair in the other). In both cases, imaging studies showed a large orbital mucocele accompanied by bony erosion and orbital wall remodeling, compressing the ocular muscle. Using an open approach, the lesion was excised and marsupialized. The symptoms resolved, and the postoperative eyeball position was normal. Orbital mucocele may cause serious complications such as ocular symptoms, orbital cellulitis, osteomyelitis, and the formation of an abscess with the potential to invade the brain. Therefore, surgeons should consider the possibility of mucocele as a late complication of surgery and initiate an immediate work-up and surgical treatment if needed.

양측 누선에 발생한 안와부 가종양의 치험례 (The Clincal Experiences of the Orbital Pseudotumor)

  • 양형은;김미선;최환준;이영만
    • Archives of Plastic Surgery
    • /
    • 제33권3호
    • /
    • pp.392-397
    • /
    • 2006
  • Orbital pseudotumor, also known as idiopathic orbital inflammatory syndrome(IOIS), may have protean clinical manifestations. IOIS should be determined with a diagnosis of exclusion, with evaluation directed toward eliminating other causes of orbital disease. Orbital MRI and CT are the important diagnostic tests, but serologic studies are necessary to exclude a systemic causes. Biopsy is usually not performed currently, as the risk of producing damage to vital structures within the orbital outweighs the benefits. Patients with multiple recurrences, or those unresponsive to therapy, should be treated of biopsy sample extraction. Corticosteroids are the mainstay of therapy and administered for several months to ensure remission. Radiotherapy may be used in patients who fail to respond to steroids or who have a rapidly progressive course. We analysed the data of two patients. There were no specific complications related to this treatment. We discussed the radiologic findings, treatment procedures, and other orbital diseases.

Late reconstruction of extensive orbital floor fracture with a patient-specific implant in a bombing victim

  • Smeets, Maximiliaan;Snel, Robin;Sun, Yi;Dormaar, Titiaan;Politis, Constantinus
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제46권5호
    • /
    • pp.353-357
    • /
    • 2020
  • Fractures of the orbital floor and walls are among the most frequent maxillofacial fractures. Virtual three-dimensional (3D) planning and use of patient-specific implants (PSIs) could improve anatomic and functional outcomes in orbital reconstruction surgery. The presented case was a victim of a terrorist attack involving improvised explosive devices. This 58-year-old female suffered severe wounds caused by a single piece of metal from a bomb, shattering the left orbital floor and lateral orbital wall. Due to remaining hypotropia of the left eye compared to the right eye, late orbital floor reconstruction was carried out with a personalised 3D printed titanium implant. We concluded that this technique with PSI appears to be a viable method to correct complex orbital floor defects. Our research group noted good aesthetic and functional results one year after surgery. Due to the complexity of the surgery for a major bony defect of the orbital floor, it is important that the surgery be executed by experienced surgeons in the field of maxillofacial traumatology.

Three-dimensional and topographic relationships between the orbital margins with reference to assessment of eyeball protrusion

  • Shin, Kang-Jae;Lee, Shin-Hyo;Koh, Ki-Seok;Song, Wu-Chul
    • Anatomy and Cell Biology
    • /
    • 제50권1호
    • /
    • pp.41-47
    • /
    • 2017
  • This study investigated the topographic relationships among the eyeball and four orbital margins with the aim of identifying the correlation between orbital geometry and eyeball protrusion in Koreans. Three-dimensional (3D) volume rendering of the face was performed using serial computed-tomography images of 141 Koreans, and several landmarks on the bony orbit and the cornea were directly marked on the 3D volumes. The anterior-posterior distances from the apex of the cornea to each orbital margin and between the orbital margins were measured in both eyes. The distances from the apex of the cornea to the superior, medial, inferior, and lateral orbital margins were 5.8, 5.8, 12.0, and 17.9 mm, respectively. Differences between sides were observed in all of the orbital margins, and the distances from the apex of the cornea to the superior and inferior orbital margins were significantly greater in females than in males. The anterior-posterior distance between the superior and inferior orbital margins did not differ significantly between males (6.3 mm) and females (6.2 mm). The data obtained in this study will be useful when developing practical guidelines applicable to forensic facial reconstruction and orbitofacial surgeries.

Blowout 골절의 부위와 정도가 안구함몰 및 복시에 미치는 영향 (EFFECTS OF THE SITE AND THE EXTENT OF BLOWOUT FRACTURE ON ENOPHTHALMOS AND DIPLOPIA)

  • 황웅;유선열
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권4호
    • /
    • pp.292-300
    • /
    • 2004
  • Orbital blowout fractures are common consequence to blunt periorbital trauma. Pure orbital blowout fractures first occur at the weakest point of the orbital wall. Computed tomography(CT) is recognized to be the best imaging technique to evaluate orbital fractures. The extent and location of a blowout fractures in the CT scan were noted to have an effect on the clinical outcome. In the early posttraumatic period, the presence of significant enophthalmos is difficult to detect because of orbital edema. Early surgical intervention may improve the ultimate outcome because open reconstruction becomes more difficult if surgery is delayed. In this study, we evaluated isolated blowout fractures of the orbital floor by region-of-interest measurements from CT scans and their relationship to ophthalmologic findings. Six patients of the medial orbital wall fractures, eleven patients of the inferior orbital wall fractures, nineteen of the medial and the inferior orbital wall fractures confirmed by CT scan, were evaluated. The area of fracture and the volume of the displaced orbital tissue were determined from CT scan using linear measurements. Each of the calculated values for the area and the volume were compared with the degree of the enophthalmos, the diplopia, and the eyeball movement limitation to determine whether there was any significant relationship between them. The fracture area and the volume of the herniated orbital tissue were significantly positively correlated with the enophthalmos and the ocular motility limitation and not correlated with the diplopia. For the enophthalmos of 2mm or greater, the mean fracture area was 3.55{\pm}1.25cm^2$ and the volume of the herniated orbital tissue was $1.74{\pm}0.97cm^3$; for less than 2mm enophthalmos, $1.43{\pm}0.99cm^3$ and $0.52{\pm}0.49cm^3$, respectively. The enophthalmos of 2mm can be expected with $2.92cm^2$ of the fracture area and $1.40cm^3$ of the herniated orbital tissue. In conclusion, the enophthalmos of 2mm or more, which is a frequent indication for surgery. It can be expected when area of fracture is $2.92cm^2$ or more, or the volume of herniated orbital tissue is $1.40cm^3$ or more. And the CT scan using linear measurements has an application in the assessment of patients with blowout fractures and provides useful information in the posttraumatic evaluation of orbital fractures.

Titanium Micro-mesh의 개형을 통한 하벽부 안와골절의 재건 (The Inferior Orbital Wall Reconstruction by Titanium Micro-mesh Remodeling)

  • 김한구;최민석;김우섭;배태희
    • 대한두개안면성형외과학회지
    • /
    • 제10권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The inferior orbital wall is the most vulnerable to injury and inadequate reconstruction of inferior orbital fracture result in postoperative complications include enophthalmos, ocular dystopia and diplopia. Although the anatomical reconstruction of the inferior orbital wall is necessary to prevent these complications, the complexity of inferior orbital wall makes it difficult. We fabricated and remodeled the titanium micro-mesh plate for the anatomical reconstruction of inferior orbital wall. Methods: Twenty-nine patients with inferior orbital wall blow-out fracture were operated and twelve of them presented large extensive fracture. We intraoperatively fabricated and remodeled the Titanium-micro mesh to angulated lazy S shape similar to contralateral uninjured orbit. The preoperative and postoperative facial CT scan verified the 3-dimensional and anatomical reconstruction of the fractures. The mean follow-up was 19.7 months and postoperative complications was evaluated. Results: All cases showed the exact anatomical reconstruction, but there were minor complications in two cases. one patient had postoperative diplopia until 3months after surgery and the other patient had persistent enophthalmos (2 mm), but no further surgical correction was required. Conclusion: The comprehensive understanding of orbital convexity is the most important factor for anatomical reconstruction of inferior orbital fracture. We could prevent postoperative complications after inferior orbital wall reconstruction by intraoperative fabrication and anatomical remodeling of Titanium micro-mesh.