• Title/Summary/Keyword: oral drug delivery

Search Result 132, Processing Time 0.023 seconds

Pharmaceutical Devices for Oral Cavity-based Local and Systemic Drug Delivery

  • Yun, Gyi-Ae;Choi, Sung-Up;Park, Ki-Hwan;Rhee, Yun-Seok;Lee, Beom-Jin;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.113-118
    • /
    • 2010
  • Pharmaceutical technology has primarily focused on the development of the best dosage forms depending on the route of administration. The design of dosage forms is greatly influenced by the route of administration. Due to a variety of advantages such as avoidance of first-pass effect, abundant blood supply and easy access to the absorption site, the oral cavity has frequently been selected as a site for drug delivery. Since the oral cavity is relatively unique from the anatomical and physiological viewpoint, one should always consider these conditions when designing the drug delivery systems for the oral cavity. In this regard, the current review paper was prepared to summarize the essential features of the drug delivery systems utilized in the oral cavity, along with the introduction of various dosage forms developed to date.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

New Application of Endosseous Implants - Implant Mediated Drug Delivery System(IMDDS) (임상가를 위한 특집 3 - 임플란트의 새로운 응용 - 임플란트 매개 약물 전달 시스템)

  • Park, Young-Seok;Lee, Shin-Jae;Hwang, Chee Il
    • The Journal of the Korean dental association
    • /
    • v.52 no.9
    • /
    • pp.550-557
    • /
    • 2014
  • The restorative treatment with dental implants in edentulous patients has been a well documented treatment modality proven in experimental studies and long-term clinical investigations. The aim of this paper is to introduce the implant mediated drug delivery system as a novel application of endosseous implants. The system is composed of hollow cylindric implants which has multiple microholes for drug delivery. For this purpose, the general outlines of drug delivery system and drug delivery route is discussed briefly. In addition, this paper deals with the results of experiments done up to now and the future perspective of the system.

Evolution of the Patent for Osmotic Drug Delivery (삼투정을 이용한 약물전달기술 특허의 진화과정)

  • Lee, Hai-Bang;Lee, Dong-Hun;Kang, Bok-Ki;Jeung, Sang-Young;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.241-258
    • /
    • 2002
  • Such osmotic drug delivery systems are based on osmosis, the diffusion of water transversely from a medium with a low osmotic pressure to a medium with a high osmotic pressure for the controlled delivery of active agents. In this review, U.S. Patents on osmotic drug delivery analyze 261 patents until December 2001. These devices form now a major market of drug delivery products. Because of their advantage and innovate idea, it appears that the future of oral drug delivery mark,εt in Korea is promising.

Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats

  • Li, Chunmei;Wang, Zhezhe;Li, Guisheng;Wang, Zhenhua;Yang, Jianrong;Li, Yanshen;Wang, Hongtao;Jin, Haizhu;Qiao, Junhua;Wang, Hongbo;Tian, Jingwei;Lee, Albert W.;Gao, Yonglin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.222-228
    • /
    • 2020
  • Background: 20(S)-ginsenoside-Rg3 (C42H72O13), a natural triterpenoid saponin, is extracted from red ginseng. The increasing use of 20(S)-ginsenoside Rg3 has raised product safety concerns. Methods: In acute toxicity, 20(S)-ginsenoside Rg3 was singly and orally administrated to Kunming mice and Sprague-Dawley (SD) rats at the maximum doses of 1600 mg/kg and 800 mg/kg, respectively. In the 26-week toxicity study, we used repeated oral administration of 20(S)-ginsenoside Rg3 in SD rats over 26 weeks at doses of 0, 20, 60, or 180 mg/kg. Moreover, a 4-week recovery period was scheduled to observe the persistence, delayed occurrence, and reversibility of toxic effects. Results: The result of acute toxicity shows that oral administration of 20(S)-ginsenoside Rg3 to mice and rats did not induce mortality or toxicity up to 1600 and 800 mg/kg, respectively. During a 26-week administration period and a 4-week withdrawal period (recovery period), there were no significant differences in clinical signs, body weight, food consumption, urinalysis parameters, biochemical and hematological values, or histopathological findings. Conclusion: The mean oral lethal dose (LD50) of 20(S)-ginsenoside Rg3, in acute toxicity, is above 1600 mg/kg and 800 mg/kg in mice and rats, respectively. In a repeated-dose 26-week oral toxicity study, the no-observed-adverse-effect level for female and male SD rats was 180 mg/kg.

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-I - Preparation and pharmaceutical evaluation of controlled release acetaminophen tablets-

  • Shim, Chang-Koo;Kim, Ki-Man;Kim, Young-Il;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1990
  • In order to develop a controlled-release oral drug delivery system (DDS) which sustains the plasma acetaminophen (AAP) concentration for a certain period of time, microporous membrane-coated tablets were prepared and evaluated in vitro. Firstly, highly water-soluble core tablet of AAP were prepared with various formulations by wet granulation and compression technique. Then the core tablets were coated with polyvinychloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of core tablets and coating suspensions on the pharmaceutical characteristics such as drug release kinetics and membrane stability of the coated tablets was investigated in vitro. AAP was released from the coated tablets as a zero-order rate in a pH-independent manner. This independency of AAP release to pH change from 1.2 to 7.2 is favorable for the controlled oral drug delivery, since it will produce a constant drug release in the stomach and intestine regardless of the pH change in the GI tract. Drug release could be extended upto 10 h according to the coating condition. The release rate could be controlled by changing the formula compositions of the core tablets and coating suspensions, coat weight per each tablet, and especially PVC/sucrose ratio and particle size of the sucrose in the coating suspension. The coated tablets prepared in this study had a fairly good pharmaceutical characteristics in vitro, however, overall evaluation of the coated tablet should await in vivo absorption study in man.

  • PDF

Controlled Release of Fluorouracil from Sodium Alginate Matrices (알긴산나트륨 마트릭스로부터 플루오로우라실의 제어 방출)

  • Kim, Sung-Ho;Jung, Yong-Jae;Ha, Chung-Hun
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.149-153
    • /
    • 1992
  • The applicability of sodium alginate as a carrier of 5-fluorouracil as an oral delivery system was investigated. Hydrophobicity of sodium alginate was controlled by introducing cetyl group to this polymer. The effects of degree of esterification for n-cetyl partial ester on the rate of release of 5-fluorouracil in artificial gastric juice and artificial intestinal juice were examined. The release rete of the drug in the gastric juice was mainly affected by the diffusion of the drug. The release rate of the drug in the intestinal juice could be controlled by the degree of esterification. The alginate matrices may be a valuable addition as the carrier of 5-fluorouracil for an oral delivery system.

  • PDF

Drug Release from Xyloglucan Beads Coated with Eudragit for Oral Drug Delivery

  • Yoo Mi Kyong;Choi Hoo Kyun;Kim Tae Hee;Choi Yun Jaie;Akaike Toshihiro;Shirakawa Mayumi;Cho Chong Su
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.736-742
    • /
    • 2005
  • Xyloglucan (XG), which exhibits thermal sol to gel transition, non-toxicity, and low gelation concentration, is of interest in the development of sustained release carriers for drug delivery. Drug-loaded XG beads were prepared by extruding dropwise a dispersion of indomethacin in aqueous XG solution (2 wt.-$\%$) through a syringe into corn oil. Enteric coating of XG bead was performed using Eudragit L 100 to improve the stability of XG bead in gastrointestinal (GI) track and to achieve gastroresistant drug release. Release behavior of indomethacin from XG beads in vitro was investigated as a function of loading content of drug, pH of release medium, and concentration of coating agent. Adhesive force of XG was also measured using the tensile test. Uniform-sized spherical beads with particle diameters ranging from 692 $\pm$ 30 to 819 $\pm$ 50 $\mu$m were obtained. The effect of drug content on the release of indomethacin from XG beads depended on the medium pH. Release of indomethacin from XG beads was retarded by coating with Eudragit and increased rapidly with the change in medium pH from 1.2 to 7.4. Adhesive force of XG was stronger than that of Carbopol 943 P, a well-known commercial mucoadhesive polymer, in wet state. Results indicate the enteric-coated XG beads may be suitable as a carrier for oral drug delivery of irritant drug in the stomach.

Polymer-Coated Liposomes for Oral Drug Delivery (I): Stability of Polysaccharide-Coated Liposomes Against Bile Salts (고분자 코팅을 이용한 경구용 리포좀의 개발(I): 다당체로 코팅된 리포좀의 담즙산염에 대한 안정성)

  • Choi, Young-Wook;Hahn, Yang-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 1992
  • Stabilization of liposomes against degradation by bile salts has been investigated in order to develop a liposomal model system for oral drug delivery. Two polysaccharides, amylopectin (AP) and chitin (CT), were employed to coat both empty liposomes and bromthymol blue (BTB)-encapsulated liposomes by adsorption-coating techniques. Turbidity changes and BTB-release characteristics in pH 5.6 buffer solutions with or without bile salts, sodium cholate and sodium glycocholate, were observed to compare the differences between uncoated liposomes and polysaccharide-coated liposomes. Initial turbidities of both uncoated and polysaccharide-coated liposomes in buffer solution were kept constant within 3% range during 4 hours of experiments. But they were decreased in a different manner in bile salts-containing buffer solutions, showing 10% or less decrease for polysaccharide-coated liposomes and 25% or more decrease for uncoated liposomes. BTB release from uncoated liposomes has been greatly increased upto 90% after 4 hours in bile salts-containing buffer solution, which is a clue for breakdown of liposomal vesicles. However, polysaccharide-coated liposomes showed the controlled-release pattern which is proportional to square-root of time, followed by around 50% release for the same time period. Consequently, it is possible to conclude that these polysaccharide-coated liposomes might be an available system for oral delivery of a drug which is unstable in gut environment.

  • PDF

Lipid nanodispersion for parenteral drug delivery: in vitro characterization

  • Lee, Jung-Min;Choi, Sung-Up;Lee, Byoung-Moo;Lee, Sung-Jae;Choi, Young-Wook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.295.2-295.2
    • /
    • 2003
  • Lipid nanodispersion (LN) composed of biocompatible lipids and surfactants is an alternative parenteral drug delivery system especially for lipophilic drugs. It has been studied for versatile applications such as oral, parenteral, topical, ocular, vaccine, and peptide drug delivery. The purpose of this study was to produce a novel LN system for intravenous injection using the high pressure homogenization. (omitted)

  • PDF