• Title/Summary/Keyword: oral and maxillofacial bone regeneration

Search Result 252, Processing Time 0.019 seconds

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar;Kundu, Soma;Patra, Nabanita;Ahn, Mee Young;Ahn, Ji Hae;Son, Ji Yeon;Yoon, Jung Hyun;Moon, Hyung Ryoung;Lee, Byung Mu;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats

  • de Campos Kajimoto, Natalia;de Paiva Buischi, Yvonne;Loomer, Peter Michael;Bromage, Timothy G.;Ervolino, Edilson;Fucini, Stephen Enrico;Pola, Natalia Marcumini;Pirovani, Beatriz Ommati;Morabito, Maria Juliana Sismeiro;de Almeida, Juliano Milanezi;Furlaneto, Flavia Aparecida Chaves;Nagata, Maria Jose Hitomi
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.374-385
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of locally delivered 1% alendronate (ALN) gel used as an adjunct to non-invasive periodontal therapy. Methods: Ligature-induced periodontitis was performed in 96 rats. The ligature was tied in the cervical area of the mandibular left first molar. The animals were randomly divided into 4 groups: 1) NT, no treatment; 2) SRP, scaling and root planning; 3) SRP/PLA, SRP followed by filling the periodontal pocket with placebo gel (PLA); and 4) SRP/ALN, SRP followed by filling the periodontal pockets with 1% ALN gel. Histomorphometric (percentage of bone in the furcation region [PBF]) and immunohistochemical (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tartrate-resistant acid phosphatase) analyses were performed. Data were statistically analyzed, with the threshold of statistical significance set at P≤0.05. Results: The SRP, SRP/PLA, and SRP/ALN groups presented a higher PBF than the NT group (P≤0.01) at 7, 15, and 30 days. The SRP/ALN group presented a higher PBF than the SRP/PLA group in all experimental periods, as well as a higher PBF than the SRP group at 15 and 30 days. No differences were observed in the immunohistochemical analyses (P>0.05 for all). Conclusions: Locally delivered 1% ALN gel used as an adjunct to SRP enhanced bone regeneration in the furcation region in a rat model of experimental periodontitis.