• Title/Summary/Keyword: optofluidics

Search Result 3, Processing Time 0.014 seconds

Dynamic Flow Lithography Technologies (역학적 유체 리소그래피 기술)

  • Chung, Su-Eun;Park, Wook;Kwon, Sung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.453-460
    • /
    • 2009
  • In this review paper, concepts in optofluidics are applied to an advanced manufacturing technology based on self-assembled microparts. The "optical" aspect of optofluidics will be described in the context of photolithography, and the "fluidic" aspect will be discussed in the context of self-assembly. First, optofluidic maskless lithography will be introduced as a dynamic fabrication method to generate microparticles in microfluidic channels. Next, the history and application of optofluidic lithography will be presented.

Structural properties of β-Fe2O3 nanorods under compression and torsion: Molecular dynamics simulations

  • Kilic, Mehmet Emin;Alaei, Sholeh
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1352-1358
    • /
    • 2018
  • In recent years, one-dimensional (1D) magnetic nanostructures, such as magnetic nanorods and chains of magnetic nanoparticles have received great attentions due to the breadth of applications. Especially, magnetic nanorods has been opened an area of active research and applications in medicine, sensors, optofluidics, magnetic swimming, and microrheology since they possess the unique magnetic and geometric features. This study focuses on the molecular dynamics (MD) simulations of an infinitely long crystal ${\beta}-Fe_2O_3$ nanorod. To elucidate the structural properties and dynamics behavior of ${\beta}-Fe_2O_3$ nanorods, MD simulation is a powerful technique. The structural properties such as equation of state and radial distribution function of bulk ${\beta}-Fe_2O_3$ are performed by lattice dynamics (LD) simulations. In this work, we consider three main mechanisms affecting on deformation characteristics of a ${\beta}-Fe_2O_3$ nanorod: 1) temperature, 2) the rate of mechanical compression, and 3) the rate of mechanical torsion.

Optical Manipulation of Droplets in a Microfluidic Platform (미세 유체 플랫폼에서의 광력을 이용한 액적의 연속적인 제어 기술의 개발)

  • Jung, Jin Ho;Cho, Hyunjun;Ha, Byung Hang;Destgeer, Ghulam;Sung, Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2014
  • In the present study, the optofluidic droplet manipulation in a microfluidic platform was demonstrated via theoretical and experimental approaches. Optical scattering force and gradient force were used to separate and trap droplets. Two types of droplets were generated by a T-junction method in the microfluidic channel. While they approach a test region where the optical beam illuminates the droplets, they were pushed by the optical scattering beam. The displacement by the laser beam is dependent on the refractive index of the droplets. By using the optical gradient force, the droplets can be trapped and coalesced. In order to bring the droplets in a direct contact, the optical gradient force was used to trap the droplets. A theoretical modeling of the coalescence was derived by combining the optical force and drag force on the droplet.