• Title/Summary/Keyword: opto-mechanical analysis

Search Result 36, Processing Time 0.025 seconds

Optimal Design of the Flexure Mounts for Satellite Camera by Using Design of Experiments (실험계획법을 이용한 인공위성 주반사경 플렉셔 마운트의 최적 설계)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.693-700
    • /
    • 2008
  • The primary mirror system in a satellite camera is an opto-mechanically coupled system for a reason that optical and mechanical behaviors are intricately interactive. In order to enhance the opto-mechanical performance of the primary mirror system, opto-mechanical behaviors should be thoroughly investigated by using various analysis procedures such as elastic, thermo-elastic, optical and eigenvalue analysis. In this paper, optimal design of the bipod flexure mounts for high opto-mechanical performance is performed. Optomechanical performances considered in this paper are RMS wavefront error under the gravity and thermal loading conditions and 1st natural frequency of the mirror system. The procedures of the flexure mounts design based on design of experiments and statistics is as follows. The experiments for opto-mechanical analysis are constructed based on the tables of orthogonal arrays and analysis of each experiment is carried out. In order to deal with the multiple opto-mechanical properties, MADM (Multiple-attribute decision making) is employed. From the analysis results, the critical design variables of the flexure mounts which have dominant influences on opto-mechanical performance are determined through analysis of variance and F-test. The regression model in terms of the critical design variables is constructed based on the response surfaceanalysis. Then the critical design variables are optimized from the regression model by using SQP algorithm. Opto-mechanical performance of the optimal bipod flexure mounts is verified through analysis.

Optimal Design of the Monolithic Flexure Mount for Optical Mirror Using Response Surface Method (반응표면법을 이용한 광학미러용 일체형 유연힌지 마운트 최적설계)

  • Kyoungho Lee;Byounguk Nam;Sungsik Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2023
  • An optimal design of a simple beam-shaped flexure hinge mount supporting an optical mirror is presented. An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. This side-supporting mount is flexible in the radial direction and rigid for the remaining degrees of freedom to support the mirror without transferring thermal load. Through thermo-elastic, optical and eigenvalue analysis, opto-mechanical performance was predicted to establish the objective functions for optimization. The key design parameters for this flexure are the thickness and length. To find the optimal values of design parameters, response surface analysis was performed using the design of experiment based on nested FCD. Optimal design candidates were derived from the response surface analysis, and the optimal design shape was confirmed through Opto-mechanical performance validation analysis.

Separation of Isochromatics and Isoclinics from Photoelastic Fringes in a Circular Disk by Phase Measuring Technique

  • Baek, Tae-Hyun;Kim, Myung-Soo;Yoshihau Morimoto;Motoharu Fujigaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.175-181
    • /
    • 2002
  • A new polariscope system involving two rotating optical elements and a digital camera for whole field fringe analysis allows automated data to be acquired quickly and efficiently. The developed phase measuring technique that uses eight images through a circular polariscope is presented for the digital measurement of isochromatics and isoclinics, respectively, from photoelastic fringes in a circular disk under diametric compression. Isochromatics can directly be obtained using wrapped isoclinic phases calculated by the arc tangent operator which is the four-quadrant operator from -$\pi$ to $\pi$. It is not required to unwrap isoclinic phases for the calculations of isochromatics. Unwrapped isoclinics are directly determined from isochromatic parameters. Distributions of digitally determined isoclinics are in close agreement to manual measurements. The errors which would appear in unwrapping process of isoclinics can be avoided in the determination of isochromatics.

Effective Finite Element Modeling for a Large Mirror System Using Separated Node Connectivity (비공유 Node를 이용한 대구경 거울의 효율적인 유한요소 모델링)

  • Pyun, Jae-Won;Yang, Ho-Soon;Lee, Jong-Ung;Moon, Il Kweon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.304-313
    • /
    • 2017
  • The finite element analysis for optimizing a mirror system consisting of a large-diameter mirror and flexures requires numerous, repetitive calculations and corrections of the actual model to satisfy the given design conditions. In general, modification of this real model is conducted by reconfiguring nodes of the elements. The reconfiguration is very time-consuming work, to fix the continuity of each of the newly formed component nodes at the interfaces. But the process is a very important factor in determining the analysis time. To save time in modeling and actual computation, and to attain faster convergence, we present a new opto-mechanical analysis using non-shared node connections at each of the interfaces of the optical components. By comparing the results between the new element model and a conventional element model with shared node connections, we found that the opto-mechanical performance was almost the same, but the time to reach the given condition was drastically reduced.

Large Aspheric Optics and Its Applications (대구경 비구면 광학기술과 응용)

  • Lee, Yun-Woo;Moon, Il Kweon;Kihm, Hagyong;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • A large aspheric mirror is a key component for large astronomical telescopes and high resolution satellite cameras. Since it is large and has an aspheric form, it is much more difficult to fabricate it compared to the similar size of spherical mirror. Especially, the opto-mechanical design and analysis is critical to reduce the deformation of mirror surface due to the external forces such as gravity or temperature change, as the mirror size is larger and lightweighting ratio is increased. The design requirements for the mirror are different depending on the particular ground and space applications because the environmental conditions are changed. In this paper, we explain the opto-mechanical design and analysis for ground and space applications that are among the most difficult to achieve among several technologies related to development of the large aspheric mirror.

Basic Design of Bearingless Switched Reluctance Motor with Hybrid Stator poles

  • Wang, Huijun;Liu, Jianfeng;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.336-346
    • /
    • 2012
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The structure and operating principle are presented. In order to describe the design methodology clearly, analytical torque and radial force models are established. Further, basic design procedure is described. The numbers of phases and poles have important influence on the selection of structure. These effects, along with sizing of machine envelope and internal dimensions, make the machine design an insight-intensive effort. Effect of pole arcs and air-gap length on the production of torque and radial force are analyzed in detail. Mechanical design factors such as hoop stress and first critical speed are also considered. Based on the above analysis, the characteristics of the proposed BLSRM are analyzed. A prototype motor is designed and manufactured. The validity of the proposed structure is verified by the experimental results.

Performance Analysis for Mirrors of 30 cm Cryogenic Space Infrared Telescope

  • Park, Kwi-Jong;Moon, Bong-Kon;Lee, Dae-Hee;Jeong, Woong-Seob;Nam, Uk-Won;Park, Young-Sik;Pyo, Jeong-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.321-328
    • /
    • 2012
  • We have designed a 30 cm cryogenic space infrared telescope for astronomical observation. The telescope is designed to observe in the wavelength range of 0.5~2.1 ${\mu}m$, when it is cooled down to 77 K. The result of the preliminary design of the support structure and support method of the mirror of a 30 cm cryogenic space infrared telescope is shown in this paper. As a Cassegrain prescription, the optical system of a 30 cm cryogenic space infrared telescope has a focal ratio of f/3.1 with a 300 mm primary mirror (M-1) and 113 mm secondary mirror (M-2). The material of the whole structure including mirrors is aluminum alloy (Al6061-T6). Flexures that can withstand random vibration were designed, and it was validated through opto-mechanical analysis that both primary and secondary mirrors, which are assembled in the support structure, meet the requirement of root mean square wavefront error < ${\lambda}/8$ for all gravity direction. Additionally, when the M-1 and flexures are assembled by bolts, the effect of thermal stress occurring from a stainless steel bolt when cooled and bolt torque on the M-1 was analyzed.

Thermal Analysis and Design of AlGaInP-based Light Emitting Diode Arrays

  • Ban, Zhang;Liang, Zhongzhu;Liang, Jingqiu;Wang, Weibiao;JinguangLv, JinguangLv;Qin, Yuxin
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • LED arrays with pixel numbers of $3{\times}3$, $4{\times}4$, and $5{\times}5$ have been studied in this paper in order to enhance the optical output power and decrease heat dissipation of an AlGaInP-based light emitting diode display device (pixel size of $280{\times}280{\mu}m$) fabricated by micro-opto-electro-mechanical systems. Simulation results showed that the thermal resistances of the $3{\times}3$, $4{\times}4$, $5{\times}5$ arrays were $52^{\circ}C/W$, $69.7^{\circ}C/W$, and $84.3^{\circ}C/W$. The junction temperature was calculated by the peak wavelength shift method, which showed that the maximum value appears at the center pixel due to thermal crosstalk from neighboring pixels. The central temperature would be minimized with $40{\mu}m$ pixel pitch and $150{\mu}m$ substrate thickness as calculated by thermal modeling using finite element analysis. The modeling can be used to optimize parameters of highly integrated AlGaInP-based LED arrays fabricated by micro-opto-electro-mechanical systems technology.