• Title/Summary/Keyword: optimum ventilation system

Search Result 66, Processing Time 0.023 seconds

A study on the Optimum Design Configuration of Passive Solar TI-wall system (투명단열재가 적용된 축열벽 시스템의 최적구성 선정에 관한 연구)

  • Kim, Byoung-Soo;Yoon, Jong-Ho;Yoon, Yong-Jin;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.3 no.2
    • /
    • pp.37-44
    • /
    • 2003
  • The aim of this study was to analyze the thermal performance through Test-Cell of TI-wall in domestic climate. This study was carried out as follows: 1) The TI-wall was studied for ability to reduce heat loss through the building envelope and analyzed to TIM properties. 2) Test models of TI-wall were designed through the investigation of previous paper and work, measured for winter and spring, and the thermal effects were analyzed. The type of the TIM used in test model is small-celled(diameter 4mm and thickness 50mm) capillary and cement brick(density $1500kg/m^3$) was used by thermal mass. 3) Test-cell of TI-wall was calibrated from measured data and the dynamic simulation program ESP-r 9.0. In these simulations, the measured climate conditions of TaeJon were used as outdoor conditions, and the simulation model of Test-cell was developed. 4) The sensitivity analysis is executed in various aspects with standard weather files and ESP-r 9.0, and then most suitable system of TI-wall are predicted. Finally, The suitable system of TI-wall was analysed according to sizes of air gap, kinds, thickness, and the surface absorption of therm wall. The result is following. In TI-wall, Concrete is better than cement brick, at that time the surface absorption is 95%, and the most efficient thickness is 250mm. As smaller of a air gap, as reducer of convection heat loss, it is efficient for heating energy. However, ensuring of a air gap at least more than 50mm is desirable for natural ventilation in Summer.

Analysis of Surplus Solar Energy in Greenhouse Based on Setting Temperature (설정온도별 온실내 잉여 태양에너지 분석)

  • Yoon, Yong-Cheol;Kown, Sun-Ju;Kim, Hyeon-Tae;kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.195-206
    • /
    • 2012
  • This study is about an analysis of surplus solar energy by important greenhouse types as well as setting temperature different by using Typical Meteorological Year data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generating in greenhouses during the daytime. Depending on the setting temperatures of $15{\sim}19^{\circ}C$ for greenhouse heating during day and night, surplus heat amounts were varied at the rate of about $0.2{\sim}6.9%/4^{\circ}C$ with some variations according to the greenhouse types and regions. On the other hand, the variations of supplemental heat requirements were about $29.7{\sim}50.0%/4^{\circ}C$. Depending on the setting temperatures for greenhouse ventilations(low $25{\sim}29^{\circ}C$ and high $27{\sim}31^{\circ}C$), surplus heat amounts were varied at the rate of about $-9.9{\sim}-35.6%/4^{\circ}C$ in auto-type greenhouse. But in single-type greenhouses, they were about $-5.1{\sim}-13.4%/4^{\circ}C$. There were not significant changes in supplemental heat amounts depending on setting temperatures of ventilation for both greenhouse types and regions.

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

Estimation of Surplus Solar Energy in Greenhouse (II) (온실내 잉여 태양에너지 산정(II))

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Hyeon-Tae;Km, Yong-Ju;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • This study is about an analysis of surplus solar energy by important greenhouse type using Typical Meteorological Year (TMY) data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generated in greenhouses during the daytime. The 07-auto-1 and 08-auto-1 types showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~29.0% regardless of greenhouse type. About 54.0~225.0% and 53.0~218.0% of required heating energy will be able to be supplemented respectively according to the greenhouse types. The 07-mono-1 and 07-mono-3 types also showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~26.0% and 21.0~27.0% respectively by greenhouse type. About 57.0~211.0% and 62.0~228.0% of required heating energy will be able to be supplemented by greenhouse type. Except for Daegwallyeong and Suwon area, other regions can cover heating energy only by surplus solar energy, according to the study.

Improvement of Heat Pump Heating Performance by Selective Heat Storage Using Air Heat of Inside and Outside Greenhouse (온실 내외부 공기열의 선택적 축열에 의한 히트펌프 난방성능 개선)

  • Kwon, Jin Kyung;Kim, Seung Hee;Jeon, Jong Gil;Kang, Youn Koo;Jang, Kab Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • In this study, the design and performance test of the air to water heat pump capable of producing hot water for greenhouse heating by using the surplus solar heat inside the greenhouse and the air heat outside greenhouse as the selective heat source were conducted. The heat storage operations using the surplus solar heat and the outside air heat were designed to be switched according to the setting temperature of the greenhouse in consideration of the optimum temperature range of the crop. In the developed system, it was possible to automatically control the switching of heat storage operation, heating and ventilation by setting 12 reference temperatures on the control panel. In the selective heat storage operation with the surplus solar heat and outside air heat, the temperature of thermal storage tank was controlled variably from $35^{\circ}C$ to $52^{\circ}C$ according to the heat storage rate and heating load. The heat storage operation times using the surplus solar heat and outside air heat were 23.1% and 30.7% of the experimental time respectively and the heat pump pause time was 46.2%. COP(coefficient of performance) of the heat pump of the heat storage operation using the surplus solar heat and outside air heat were 3.83 and 2.77 respectively and was 3.24 for whole selective heat storage operation. For the comparative experiment, the heat storage operation using the outside air heat only was performed under the condition that the temperature of the thermal storage tank was controlled constantly from 50 to $52^{\circ}C$, and COP was analyzed to be 2.33. As a result, it was confirmed that the COP of the heat storage operation using the surplus solar heat and outside air heat as selective heat source and the variable temperature control of the thermal storage tank was 39% higher than that of the general heat storage operation using the outside air heat only and the constant temperature control of the thermal storage tank.

The Study on Risk Factors Analysis and Improvement of VDT Syndrome in Nuclear Medicine (핵의학과 Video Display Terminals Syndrome 유해 요인 조사 및 개선에 관한 연구)

  • Kim, Jung-Soo;Kim, Seung-Jeong;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo;Han, In-Im;Joo, Yung-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • Purpose: Recently, Department of Nuclear Medicine have an interest in Video Display Terminals (VDT) syndrome including musculoskeletal disorders, ophthalmologic disorders, trouble of electromagnetic waves and stress disorders occur to VDT workers as the growing number of users and rapid pace of service period supply in large amount. This study research on the actual condition for VDT syndrome in Nuclear Medicine, Seoul National University Hospital (SNUH), discover the problem and draw a plan of upcoming improvement. The aim of this study establish awareness about VDT syndrome and is to prevent for it in the long run. Materials and Methods: Department of Nuclear Medicine, SNUH is composed Principle part, Pediatric part and PET center. We estimated risk factors visit in each part directly. Estimation method use "Check list for VDT work" of Wonjin working environment health laboratory and check list is condition of VDT work, condition of work tables, condition of chairs, condition of keyboards, condition of monitors, working position, character of health management and other working environment. Analysis result is verified in Department of Occupational and Environment, Hallym University Sacred Heard Hospital. Results: As a result of analysis, VDT condition of Department of Nuclear Medicine, SNUH is rule good. In case of work tables, recent of things are suitable to users upon the ergonomical planning, but 15% of existing work tables are below the standard value. In case of chairs are suitable, but 5% of theirs lost optimum capacity become superannuated. The keyboards are suitable for 98% of standard value. In case of monitors, angle control of screen is possible of all, but positioning control is impossible for 38%. In case of working position, 10% is fixed positioning for long time and some of the items researched unsuitable things for standard. At health management point, needed capable of improvement. Also, other working condition as lighting, temperature, noise and ventilation, discovered the problem, but is sufficient to advice value. Conclusion: VDT syndrome is occurrences of possibility continuously, come economical expensive about improvement, is inherent in various causes and originate without your knowledge. So, there is need systematic management system. In Nuclear Medicine, VDT syndrome make it better that constant interest and effort as improvement of ergonomical working environment, improvement of working procedure, regular exercise and steady stretching, and can be prevented fairly. This promote physical and mental condition of worker in top form in comfortable working environment, so this is judged by enlargement of operations efficiency and rising of satisfaction ratings of the inside client.

  • PDF