• Title/Summary/Keyword: optimum pressure

Search Result 1,729, Processing Time 0.026 seconds

Effects of Pressure and Dissolved Oxygen Concentration on the Activated Sludge (압력 및 용존산소 농도가 활성슬러지에 미치는 영향)

  • 양병수;신현무
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1995
  • This study was conducted to evaluate the effects of pressure and dissolved oxygen concentration on the activated slut비e and to determine the optimum depth of deep shaft process. Some results from this study were summarized as follows. 1. It is considered that low sludge product in the activated sludge system maintaining high dissolved oxygen concentration is attributed to the increase of endogeneous respiration rate caused by the increase of aerobic zone in the sludge floe. 2. The increase of dissolved oxygen concentration does not affect to the increase of organic removal efficiency greatly and therefore the limiting factor is the substrate transfer into the inner part of floe. 3. The yield coefficient, Y is decreased in proportion to the increase of oxygen concentration. In this study, Y values arre ranged from 0.70 to 0.41 according to the variation of dissolved oxygen concentration from 18.0mg/$\ell$ to 258 mg/$\ell$. 4. The optimum depth of deep shaft process should be determined within the limits of non-toxicity to the microorganism and it is about loom in this study.

  • PDF

A Experimental Study of Optimum Filter System Design of High Purity Polymer Thread Machine (고순도 Polymer 방사기계 필터 시스템 최적설계 기술 개발에 관한 실험적 연구)

  • Oh, T.H.;Kim, C.S.;Song, D.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.514-519
    • /
    • 2000
  • Predicting a pressure drop between inlet and outlet of the filter system is essential in designing the optimum filter system. This experiment has been carried out to investigate several design parameters which influence in a pressure drop, such as different tube length and metal fiber filter mesh size. A 1/50 scale filter system was made to simulate a real filter system. Results are compared with Darcy equation for a porous media.

  • PDF

An Analysis of Superplastic Bulging of Sheet Metal (초소성 판재의 벌지성형 공정 해석)

  • Hong, Sung-Suk;Lee, Sung-Ho;Lee, Jong-Sao
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • An analytical method has been presented for the study of the superplastic bulging process of sheet metal. Through this method, it is possible to obtain the optimum pressure-time curve for the superplastic forming and to predict the thickness distribution of bulged sheet metal with less computational cost than that by finite element analysis. Experiments have been performed to confirm the results of this analysis with Supral 150 sheets by adopting the computed optimum pressure-time curve. Good agreement between predictions and experimental data has been obtained for the bulged profile and its thickness distribution.

  • PDF

A study on the characteristics of Micro Pressure wave for the optimum cross-section design in Honam high speed railway (호남고속철도 터널 단면선정을 위한 미기압파 특성 분석에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.03a
    • /
    • pp.51-68
    • /
    • 2008
  • When the train enters into a tunnel a high speed, pressure waves are generated inside the tunnel. The pressure waves at propagate in a form of compression wave toward the tunnel exit and a fraction of the compression waves that arrives at the exit of the tunnel are discharged to outside of the tunnel and the remainder is reflected into the tunnel as expansion waves. The compression waves emitted from the tunnel does not radiate in a specific direction but in all directions. If the amplitude of the compression wave is great, it causes noise and vibration, and it is called "Micro-Pressure Wave." "Micro-Pressure Wave" must be considered as a decision for the optimum tunnel cross-section as the amplitude of the compression wave depends on train speed, tunnel length, area of tunnel and train. Therefore, this paper introduces the case study of Micro-Pressure Wave characteristics for determination of tunnel cross section in Honam high speed railway, the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 tunnel in Kyungbu HSR line. At the same time. a test of train operation model was performed and then the measurement results and test results were compared to verify that the various parameters used as input conditions for the numerical simulations, which were appropriate. Also a model test was performed, in order to analysis of the Micro-Pressure Wave Mitigation Performance by Type of Hood at Entrance Portal.

  • PDF

알루미늄 의 常溫壓接 에 關한 硏究 I

  • 이철구;엄기원
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.10-15
    • /
    • 1985
  • Roughness of the surface to be welded is one of the important factors affecting the weldabilities on the pressure welding. The purpose of this study is to investigate the influences of the surface roughness upon the welding process and the weldability of pressure welds, using Aluminium AA1050 plates treated by various surface polishing The results obtained are as following. 1. The optimum welding deformation is about 38(%)-42(%) in cold pressure weld. 2. The grinding work on the weld surface is superior to milling and paper polishing. 3. Weld pressure must be beyond $0.5kg/mm^2$ in order that the bond may be achieved.

  • PDF

Optimum Design of a Pin-Fins Type Heat Sink Using the CFD and Mathematical Optimization

  • Park, Kyoung-Woo;Oh, Park-Kyoun;Lim, Hyo-Jae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2005
  • The shape of $7\times7$ pin-fins heat sink is optimized numerically to obtain the minimum pressure drop and thermal resistance. In this study, the fin height (h), fin width (w), and fan-to-heat sink distance (c) are chosen as the design variables and the pressure drop $({\Delta}P)$ and thermal resistance $(\theta_j)$ are adopted as the objective functions. To obtain the optimum design values, we used the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem. The results show that the optimum design variables for the weighting coefficient of 0.5 are as follows: W=4.653 mm, h=59.215mm, and c=2.667mm. The objective functions corresponding to the optimal design are calculated as ${\Delta}P=6.82$ Pa and $(\theta_j)=0.56K/W$. The Pareto solutions are also presented for various weighting coefficients and they will offer very useful data to design the pin-fins heat sink.

The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition (최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

Inactivation of Microorganisms and Browning Enzymes in Angelica keiskei Juice Using High Hydrostatic Pressure (초고압을 이용한 신선초 녹즙의 살균 및 갈색화 효소의 불활성화)

  • Lee, Dong-Un;Park, Ji-Yong;Lee, Yun-Bom;Yeo, Ick-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.991-996
    • /
    • 1995
  • Effects of high hydrostatic pressure on microorganisms and browning enzymes in Angelica keiskei juice were investigated using response surface methodology. The optimum process condition for maximum reduction of total aerobes was $5700\;kg_f/cm^2$ (558.6 MPa) pressure and 7.16 min process time, and 3.44 log cycle reduction of total aerobes was predicted at the optimum condition. E. coli, initially $8.8{\times}10^3\;CFU/ml$, was completely inactivated by high hydrostatic pressure at all process conditions ($3800{\sim}6700\;kg_f/cm^2\;pressure;\;3{\sim}17\;min\;process\;time$). Polyphenol oxidase and peroxidase were partly inactivated by the high hydrostatic pressure. It was also indicated that inactivation of microorganisms and browning enzymes by hydrostatic pressure is dependent on pressure rather than process time.

  • PDF