• Title/Summary/Keyword: optimum maintenance scenario

Search Result 9, Processing Time 0.028 seconds

Optimum maintenance scenario generation for existing steel-girder bridges based on lifetime performance and cost

  • Park, Kyung Hoon;Lee, Sang Yoon;Yoon, Jung Hyun;Cho, Hyo Nam;Kong, Jung Sik
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.641-653
    • /
    • 2008
  • This paper proposes a practical and realistic method to establish an optimal lifetime maintenance strategy for deteriorating bridges by considering the life-cycle performance as well as the life-cycle cost. The proposed method offers a set of optimal tradeoff maintenance scenarios among other conflicting objectives, such as minimizing cost and maximizing performance. A genetic algorithm is used to generate a set of maintenance scenarios that is a multi-objective combinatorial optimization problem related to the lifetime performance and the life-cycle cost as separate objective functions. A computer program, which generates optimal maintenance scenarios, was developed based on the proposed method using the life-cycle costs and the performance of bridges. The subordinate relation between bridge members has been considered to decide optimal maintenance sequence and a corresponding algorithm has been implemented into the program. The developed program has been used to present a procedure for finding an optimal maintenance scenario for steel-girder bridges on the Korean National Road. Through this bridge maintenance scenario analysis, it is expected that the developed method and program can be effectively used to allow bridge managers an optimal maintenance strategy satisfying various constraints and requirements.

The Model to Generate Optimum Maintenance Scenario for Steel Bridges considering Life-Cycle Cost and Performance (강교량의 최적 유지관리 시나리오 선정 모델)

  • Park, Kyung Hoon;Lee, Sang Yoon;Kim, Jung Ho;Cho, Hyo Nam;Kong, Jung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • In this paper, a more practical and realistic method is proposed to establish the lifetime optimum maintenance strategies of the deteriorating bridges considering the life-cycle performance as well as life-cycle cost. The genetic algorithm is applied to generate the set of maintenance scenarios that is the multi-objective combinatorial optimization problem related to lifetime performance and cost as separate objective functions, and the technique to select optimum tradeoff maintenance scenario is presented. Optimum maintenance scenarios could be generated not only at the individual member level but also at the system level of the bridge. Through the analytical results of applying the proposed methodology to the existing bridge, it is expected that the methodology will be effectively used to determine the optimum maintenance strategy for introducing a real preventive maintenance system and overcoming the limits of existing maintenance methods.

Development of the Performance-Based Bridge Maintenance System to Generate Optimum Maintenance Strategy Considering Life-Cycle Cost (생애주기비용을 고려한 성능기반 교량 최적 유지관리 전략 수립 시스템 개발)

  • Park, Kyung-Hoon;Lee, Sang-Yoon;Hwang, Yoon-Koog;Kong, Jung-Sik;Lim, Jong-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.109-120
    • /
    • 2007
  • In this study, a bridge maintenance system is developed to generate performance-based optimum maintenance strategy by considering the life-cycle cost. A multi-objective combinatorial optimization problem is formulated to generate a tradeoff maintenance scenarios which satisfies the balance among the conflicting objectives such as the performance and cost during the bridge lifetime and a genetic algorithm is applied to the system. By using the developed program, this study proposes a process of optimum maintenance scenario applying to the steel girder bridge of national road. The developed system improves the current methods of establishing the bridge maintenance strategy and can be utilized as an efficient tool to provide the optimum bridge maintenance scenario corresponding to the various constraints and requirements of bridge agency.

Development of Bridge Maintenance Method based on Life-Cycle Performance and Cost (생애주기 성능 및 비용에 기초한 교량 유지관리기법 개발)

  • Park, Kyung Hoon;Kong, Jung Sik;Hwang, Yoon Koog;Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1023-1032
    • /
    • 2006
  • In this paper, a new method for the bridge maintenance is proposed to overcome the limit of the existing methods and to implement the preventive bridge maintenance system. The proposed method can establish the lifetime optimum maintenance strategy of the deteriorating bridges considering the life-cycle performance as well as the life-cycle cost. The lifetime performance of the deteriorating bridges is evaluated by the safety index based on the structural reliability and the condition index detailing the condition state. The life-cycle cost is estimated by considering not only the direct maintenance cost but also the user and failure cost. The genetic algorithm is applied to generate a set of maintenance scenarios which is the multi-objective combinatorial optimization problem related to the life-cycle cost and performance. The study examined the proposed method by establishing a maintenance strategy for the existing bridge and its advantages. The result shows that the proposed method can be effectively applied to deciding the bridge maintenance strategy.

Reliability Analysis Models for Maintenance of bridge structures (교량구조물의 유지관리를 위한 신뢰성 해석 모델)

  • Kim, Jong-Gil;Sohn, Yong-Woo;Lee, Cheung-Bin;Ahn, Young-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.251-261
    • /
    • 2004
  • Recently, the corrosion and aging of bridge structures are of great concern impractical The uncertainties of the corroded reinforced bars in concrete influence not only the safety of the bridge structures, but also the flexural strength of reinforced concrete members. This paper considers these uncertainties by providing a reliability-based framework and show that the identification of the optimum maintenance scenario is a straightforward process. This is achieved by using a computer pro망am for Life Cycle Cost Analysis of Deteriorating Structures (LCCADS). This program can consider the effects of various types of actions on the reliability index profile of a deteriorating structures.

Fuzzy Reliability Analysis Models for Maintenance of Bridge Structure Systems (교량구조시스템의 유지관리를 위한 퍼지 신뢰성해석 모델)

  • 김종길;손용우;이증빈;이채규;안영기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.103-114
    • /
    • 2003
  • This paper aims to propose a method that helps maintenance engineers to evaluate the damage states of bridge structure systems by using a Fuzzy Fault Tree Analysis. It may be stated that Fuzzy Fault Tree Analysis may be very useful for the systematic and rational fuzzy reliability assessment for real bridge structure systems problems because the approach is able to effectively deal with all the related bridge structural element damages in terms of the linguistic variables that incorporate systematically experts experiences and subjective judgement. This paper considers these uncertainties by providing a fuzzy reliability-based framework and shows that the identification of the optimum maintenance scenario is a straightforward process. This is achieved by using a computer program for LIFETIME. This program can consider the effects of various types of actions on the fuzzy reliability index profile of a deteriorating structures. Only the effect of maintenance interventions is considered in this study. However. any environmental or mechanical action affecting the fuzzy reliability index profile can be considered in LIFETIME. Numerical examples of deteriorating bridges are presented to illustrate the capability of the proposed approach. Further development and implementation of this approach are recommended for future research.

  • PDF

A Study on the LOLP Sensitivity Analysis for Determination of Reliability Criteria in Generation Expansion Planning (전원개발계획 공급신뢰도 기준 설정을 위한 LOLP 민감도 분석)

  • Chung, Do-Young;Kim, Kwang-In;Lee, Sang-Chul;Park, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.543-545
    • /
    • 1995
  • The purpose of this paper is to determine the proper reliability criteria used in generation expansion planning of electric utilities. In this paper, we tried to combine long-term generation expansion planning and short-term weekly maintenance scheduling program package. We set two scenarios in which the O&M technology of power plants will be improved or not in the future. We performed LOLP sensitivity analysis for each scenario to determine the optimum reliability criteria in the power system operation aspects.

  • PDF

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

Performance of Drip Irrigation System in Banana Cultuivation - Data Envelopment Analysis Approach

  • Kumar, K. Nirmal Ravi;Kumar, M. Suresh
    • Agribusiness and Information Management
    • /
    • v.8 no.1
    • /
    • pp.17-26
    • /
    • 2016
  • India is largest producer of banana in the world producing 29.72 million tonnes from an area of 0.803 million ha with a productivity of 35.7 MT ha-1 and accounted for 15.48 and 27.01 per cent of the world's area and production respectively (www.nhb.gov.in). In India, Tamil Nadu leads other states both in terms of area and production followed by Maharashtra, Gujarat and Andhra Pradesh. In Rayalaseema region of Andhra Pradesh, Kurnool district had special reputation in the cultivation of banana in an area of 5765 hectares with an annual production of 2.01 lakh tonnes in the year 2012-13 and hence, it was purposively chosen for the study. On $23^{rd}$ November 2003, the Government of Andhra Pradesh has commenced a comprehensive project called 'Andhra Pradesh Micro Irrigation Project (APMIP)', first of its kind in the world so as to promote water use efficiency. APMIP is offering 100 per cent of subsidy in case of SC, ST and 90 per cent in case of other categories of farmers up to 5.0 acres of land. In case of acreage between 5-10 acres, 70 per cent subsidy and acreage above 10, 50 per cent of subsidy is given to the farmer beneficiaries. The sampling frame consists of Kurnool district, two mandals, four villages and 180 sample farmers comprising of 60 farmers each from Marginal (<1ha), Small (1-2ha) and Other (>2ha) categories. A well structured pre-tested schedule was employed to collect the requisite information pertaining to the performance of drip irrigation among the sample farmers and Data Envelopment Analysis (DEA) model was employed to analyze the performance of drip irrigation in banana farms. The performance of drip irrigation was assessed based on the parameters like: Land Development Works (LDW), Fertigation costs (FC), Volume of water supplied (VWS), Annual maintenance costs of drip irrigation (AMC), Economic Status of the farmer (ES), Crop Productivity (CP) etc. The first four parameters are considered as inputs and last two as outputs for DEA modelling purposes. The findings revealed that, the number of farms operating at CRS are more in number in other farms (46.66%) followed by marginal (45%) and small farms (28.33%). Similarly, regarding the number of farmers operating at VRS, the other farms are again more in number with 61.66 per cent followed by marginal (53.33%) and small farms (35%). With reference to scale efficiency, marginal farms dominate the scenario with 57 per cent followed by others (55%) and small farms (50%). At pooled level, 26.11 per cent of the farms are being operated at CRS with an average technical efficiency score of 0.6138 i.e., 47 out of 180 farms. Nearly 40 per cent of the farmers at pooled level are being operated at VRS with an average technical efficiency score of 0.7241. As regards to scale efficiency, nearly 52 per cent of the farmers (94 out of 180 farmers) at pooled level, either performed at the optimum scale or were close to the optimum scale (farms having scale efficiency values equal to or more than 0.90). Majority of the farms (39.44%) are operating at IRS and only 29 per cent of the farmers are operating at DRS. This signifies that, more resources should be provided to these farms operating at IRS and the same should be decreased towards the farms operating at DRS. Nearly 32 per cent of the farms are operating at CRS indicating efficient utilization of resources. Log linear regression model was used to analyze the major determinants of input use efficiency in banana farms. The input variables considered under DEA model were again considered as influential factors for the CRS obtained for the three categories of farmers. Volume of water supplied ($X_1$) and fertigation cost ($X_2$) are the major determinants of banana farms across all the farmer categories and even at pooled level. In view of their positive influence on the CRS, it is essential to strengthen modern irrigation infrastructure like drip irrigation and offer more fertilizer subsidies to the farmer to enhance the crop production on cost-effective basis in Kurnool district of Andhra Pradesh, India. This study further suggests that, the present era of Information Technology will help the irrigation management in the context of generating new techniques, extension, adoption and information. It will also guide the farmers in irrigation scheduling and quantifying the irrigation water requirements in accordance with the water availability in a particular season. So, it is high time for the Government of India to pay adequate attention towards the applications of 'Information and Communication Technology (ICT) and its applications in irrigation water management' for facilitating the deployment of Decision Supports Systems (DSSs) at various levels of planning and management of water resources in the country.