• Title/Summary/Keyword: optimum maintenance

Search Result 377, Processing Time 0.035 seconds

Optimum Life Cycle Cost Design of High-Speed Railway Steel Bridges (고속철도 강교량의 총기대비용 최적설계)

  • 조효남;민대홍;조준석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, an optimum design model for minimizing the life-cycle cost (LCC) of high-speed railway steel bridges is proposed The point is that it takes into account service life process as a whole, and thus the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs, expected strength failure costs and expected serviceability failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. By processing the optimum LCC design the effective and rational basis is proposed for calculating the total LCC and the sensitivity analysis of LCC is peformed. Based on a numerical example, it may be positively stated that the optimum LCC design of high-speed railway steel bridges proposed in this study provides a lot more rational and economical design, and thus the proposed approach will expedite the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Failure Data Analysis of J79 Engine Transfer Gearbox for Aircraft Maintenance Planning (항공기 정비계획을 위한 J79 엔진 Transfer Gearbox의 고장데이터 분석)

  • Choi, Jae-Man;Yang, Seung-Hyo;Hwang, Young-Ha;Son, Ik-Sang;On, Yong-Sub;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.781-787
    • /
    • 2010
  • Forecasting possible failure characteristics is very important in maintenance planning because it helps in predicting any future failures and determining the optimum replacement interval. This paper examines the time.to-failure distribution of the transfer gearbox of a J79 engine by using a probability plotting technique which is one of the most convenient techniques for reliability analysis. Various probability distributions are evaluated for determining the suitable probability distribution of the failure data of the transfer gearbox, and the resulting correlation coefficient indicates that failure data have a lognormal distribution. The expected number of unscheduled maintenance actions and the optimum replacement interval for various values of cost ratios are determined.

A Study on the Work Management Method Considering Risks in Nuclear Power Plants (원자력발전소에서 리스크를 고려한 작업관리 방법)

  • Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • Nuclear power plants(NPPs) are consisted of power production functions and safety functions preventing leakage of radiation. Operators working in NPPs shall maintain these functions during an operation period through various activities such as improvement & modification, corrective maintenance, preventive maintenance and surveillance test. According to the performance of these work activities, there are configuration changes in NPPs systems. Its changes cause the increase of safety risks(CDF) and plant trip risks. Recently, the importance of risk management is increasing gradually in the operation process of NPPs. Therefore, this paper presents the work management methods using the various risk monitoring systems during power operation and overhaul period. Also this paper suggests the optimum application ways of risk systems for work management.

Optimal Spare Provisioning for Group Replacement Policy (경제적인 그룹교체보전을 위한 최적 예비품 재고수준의 결정)

  • Yoo, Young Kwan;Park, Roh Gook
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In this paper, a jointly optimal group replacement and spare provisioning policy is presented. Most maintenance policies assume that the spare inventory is always available, but in practice the maintenance schedule is affected by the availability of spare inventory. We present a maintenance-inventory model which jointly optimizes the group replacement interval and spare ordering quantity. Group replacement policy is used when a group of units are put in operation simultaneously. The operating fleet is replaced altogether at a predetermined number of units are failed. A sufficient level of spare inventory is carried to perform a number of group replacement. A cost rate expression which considers the group maintenance cost and inventory holding cost is derived and a heuristic method for searching the optimum value of decision variables is suggested. Numerical examples demonstrate the analytical results and the performance of the presented model.

  • PDF

Corrosion-Fatigue Reliability-Based Life Cycle Cost Analysis of High-Speed Railway Steel Bridges (고속철도 강교량의 부식.피로신뢰성 기반 생애주기비용 분석)

  • Jeon, Hong-Min;Sun, Jong-Wan;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1132-1140
    • /
    • 2007
  • As it recently appears that Life Cycle Cost Analysis may be considered as new methodology for economic valuation of infrastructure many researches have been made to assess LCC(Life Cycle Cost) of each facility based on a reasonable methods. In general, LCC is composed of construction cost and expected maintenance repair cost. And especially, maintenance repair cost must be estimated to enhance the reliability through systematic and reasonable methods. However in Korea, because high speed railway steel bridges are recently constructed no direct statistical data are available for the account of the maintenance cost and then their maintenance characteristics are not linear yet. Therefore, the approach proposed in the paper utilizes a theoretical determination and degradation of the corrosion and fatigue of the bridges based on Rahgozar et al.(2006)'s model on fatigue notch factor considering into the corrosion to incorporate the corrosion effect into the fatigue strength reduction model. And then, the corresponding probability of failure is calculated in terms of the reliability index using S-N curve to formulate the fatigue limit state. Therefore, this paper proposes the minimum Life Cycle Cost through optimum maintenance plan analysis of high-speed railway steel bridges under construction. Finally, this paper reviews the proposed model in oder to confirm the applicability and feasibility by appling it to high speed railway steel bridges under construction

  • PDF

Developing the Optimal Decision-Making Process through Preventive Maintenance Policy Based on the Reliability Threshold for Leased Equipment (대여장비의 신뢰도 기반 예방보전 정책을 통한 최적 의사결정 과정 개발)

  • Bae, Kiho;Lee, Juhyun;Park, Seonghwan;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.246-255
    • /
    • 2017
  • Purpose: This study proposes the optimal PM (preventive maintenance) policy of leased equipment for lessee's decision-making using two types of reliability condition. Methods: We consider reliability threshold based PM model. Equipment reliability is estimated and used as condition variable. The effect of repair for maintenance is imperfect and represented by age reduction factor. Results: We provide two PM policies. Policy 1 is focused on minimized total cost. This policy guarantees reliability threshold until last maintenance action. Policy 2 focus on maintaining reliability threshold during leased period. The proposed approach provides optimal reliability threshold under number of PM. Through result, we finally construct decision-making process for lessee using reliability threshold and end of reliability. Conclusion: This study provides two PM policy for lessee's decision-making. Through numerical example, we get a result of optimal reliability threshold, number of PM, optimum alternative under lessee's reliability condition.

Optimum Design of Braced Steel Framed Structures Considering Soil Condition Under Earthquake Loads (지반조건을 고려한 브레이스된 강골조 구조물의 내진 최적설계)

  • Park, Moon-Ho;Kim , Ki-Wook;Lee , Seung-Jo;Park , Jung-Hwal
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.97-107
    • /
    • 2006
  • This study is structural analysis and continuous, discrete optimum design of braced steel frame structures under earthquake loads considering soil condition. The program which is able to perform simultaneously structural analysis and continuous, discrete optimum design, it is applied steel frame structures using unbraced, Z-braced, and X-braced types and analyze the program about static loads and seismic loads. The purpose of this study is to present proper braced type for seismic effects by comparing and analyzing results of analytic method about various cases using specially Newmark-Hall design spectrum, ATC design spectrum and ATC equivalent static analysis and finding minimum weight and design variables which satisfy the ultimate strength requirements of AISC-ASD specifications, the serviceability requirements and allowable story drift requirements of ATC-3-06 and various constraints.

Simulation on Optimum Repairing Number of Carbonated RC Structure Based on Probabilistic Approach (확률론을 고려한 탄산화된 RC 구조물의 최적 보수시기 해석)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.230-238
    • /
    • 2017
  • Carbonation is a representative deterioration for underground structure, which causes additional repair for service life. This study proposes a simplified equation for optimum repair timing without complicated probability calculation, considering initial and repair conditions For the work, initial service life, extended service life through repair, and their COVs(Coefficient of Variation) are considered, and the periods which can reduce number of repair are evaluated. Assuming the two service lives to be independent, the repair timings are derived from 10 to 50 years based on the probabilistic method, and the regression analysis technique for optimum repairing timing is proposed. Decreasing COV has insignificant effect on reducing repairing number but shows a governing effect on changes in probability near the critical repairing stage. The extension of service life through repairing is evaluated to be a critical parameter for reducing repairing number. The proposed technique can be efficiently used for maintenance strategy with actual COV of initial and additional service life due to repairing.

The Study on the Development of Automatic Rebar Placement System Applying Selection Method of Optimum Reinforcing Bar Group on Shear Wall (최적배근그룹 선정방법을 적용한 전단벽체의 자동배근 시스템 개발에 관한 연구)

  • Cho, Young-Sang;Kim, Dong-Eun;Jin, Hyun-Ah;Jang, Hyun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • This study takes shear wall of reinforced concrete structure as study object, and the purpose of this study is to suggest structure BIM based on automatic reinforcing bar placement system applying set-based design through the most optimum reinforcing bar placement group that was selected by applying AHP (analytical hierarchy process) method from design step. For this, the most optimum reinforcing bar placement group was selected by pairwise comparison analysis on complex standard of multiple alternatives. And shear wall automatic reinforcing bar placement system has been developed, which can automatically generate members and arrange reinforcing bar by structure design algorithm and using open API (application programming interface) provided by a BIM software vendor. As a result, the most optimum reinforcing bar placement group of the highest weight, ALT1, was selected and was generated using Tekla Structure program.

Research on the Optimum Design for PSC Box Girder Bridges Using the Full Staging Method (FSM 공법 PSC 박스 거더교의 최적설계에 관한 연구)

  • Kim, Ki-Wook;Park, Moon-Ho;Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.159-167
    • /
    • 2004
  • The objective of this study is development of the optimum design program to minimize the cost for PSC box girder bridge using the full staging method to indicate the necessity for the optimum design applied many types of bridges. It also considered the proper span length to girder depth ratio and the cell number along the width of bridge. This program used SUMT procedure and Kavlie's extended penalty function to allow infeasible design points in the process. Powell's direct method was used in searching design points and Gradient Approximate Method was used to reduce design hours. This study showed the convergence in design parameter and correlation of totally optimized cost according to cell numbers, span lengths, and lane numbers.