• Title/Summary/Keyword: optimum maintenance

Search Result 377, Processing Time 0.026 seconds

A Study of K-9 engine Proper Depot maintenance Cycle (K-9 자주포 엔진 적정 창정비주기 연구)

  • Seo, Seong-Cheol;Kim, Tae-Gyun;Song, Bang-Won
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.75-85
    • /
    • 2005
  • Even though K-series combat equipment's engine depot maintenance cycle of ROK army is 10years In average, that of the K-9 Self Propelled(SP) howitzer which has been fielded since 99 $3{\sim}4$years causing limitations to effective equipment operations and combat-readiness. Therefore, the current K-9 self-propelled howitzer engine operation period of 1,500 hours, which is greatly shorter than other equipments, had to be verified. In order to find the optimum depot maintenance cycle, related field operation conditions were verified and opinions were collected, and also the background on current depot maintenance cycle setting was studied.

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

A Study on the Optimum Selection of Railload Line using VE-LCC Analysis - Based on the Optimum Selection of Railway Bridge - (VE-LCC 분석을 통한 철도 노선의 최적안 선정방안 연구 - 교량 선정방안을 중심으로 -)

  • Shin Tae-Kyun;Lee Seung-Hoon;Kwon Jae-Seong;Koo Jeong-San;Koo Kyo-Jin;Hyun Chang-Taek
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.488-493
    • /
    • 2005
  • Railload line design of the railroad construction project should be planed considering the variety of quantitative and qualitative factors, and needs to be selected the optimum altinative weighing from VE/LCC analysis of the planned design. The purpose of this research is for showing selecting plan of the optimum railload line and railway bridge applying VE/LCC analysis in selecting the optimum altinative of railroad construction based on quantitative and qualitative factors, such as initial construction cost, maintenance cost, owner and user's requirements. In this research showed the application plan by each stage using data analysis, function analysis, and alternative evaluation of VE/LCC analysis with AHP and LCC analysis program for the selection. This research is proved the rationality and application of the course of selecting the optimum alternative through case application

  • PDF

Multi-Objective Optimization of Steel Structures Using Fuzzy Theory (퍼지 이론을 이용한 강구조물의 다목적 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • The main objective of this study is to develop a multi-objective fuzzy optimum design program of steel structures and to verify that the multi-objective fuzzy optimum design is more reasonable than the single objective optimum design in real structural design. In the optimization formulation, the objective functions are both total weight and deflection. The design constraints are derived from the ultimate strength of service ability requirement of AISC-LRFD specification. The structural analysis was performed by the finite element method and also considered geometric non-linearity. The different importance of optimum criteria were reflected with two weighting methods ; membership weighting method and objective weighting method. Thus, designers could choose rational optimum solution of structures with application of two weighting methods.

Optimum Maintenance and Retrofit Planning for Reliable Seismic Performance of the Bridges (내진성능확보를 위한 교량의 최적유지보수계획법)

  • 고현무;이선영;박관순;김동석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.29-36
    • /
    • 2002
  • In the maintenance and retrofit planning of a bridge system, the optimal strategy for inspection and repair are suggested by minimizing the expected total life-cycle cost, which includes the initial cost, the costs of inspection, repair, and failure. Degradation of seismic performance is modeled by using a damage function. And failure probability is computed according to the degree of damage detection by random vibration theory and the event tree analysis. As an example to illustrate the proposed approach, a 10-span continuous bridge structure is used. The numerical results show that the optimum number of the inspection and the repair are increased, as the seismic intensity is increased and the soil condition of a site becomes more flexible.

Optimum Design of Plane Steel Frames Using Second-Order Inelastic Analysis and Section Increment Method (2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.143-151
    • /
    • 2008
  • In this paper, the optimum design of plane steel frames using second-order inelastic analysis and section increment method is presented. Since the second-order inelastic analysis accounts for geometric and material nonlinearities of the whole system as well as its component members, the design method based on second-order inelastic analysis does not require separate member capacity checks after analysis. A section increment method proposed by this paper is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.

The Estimation Method of Equipment Maintenance Cost (장비유지비 소요 예측 기법 연구)

  • Kim, Jeong-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.3
    • /
    • pp.41-51
    • /
    • 2008
  • Advanced high-tech weapons have enormous affect on combat strength in modern warfare. However, lack of maintenance can cause decrease in equipment operating rate as well as decrease in expectation on demonstrative effect of combat strength during wartime. Therefore it is essential for combat readiness that the optimum requirement of equipment maintenance cost are forecasted and included in the budget. In this paper, the trend of equipment maintenance cost about K-111 1/4t military vehicle is first analyzed by evaluating the performance data of field operation. Secondly, based on above analyzed results, the forecasting model of equipment maintenance cost is designed. Finally, by applying this forecasting model, suggestion and estimation method of equipment maintenance cost have presented for the foreseeable future.

Guide-line for Developing a Maintainability Program (보전성 경영 프로그램 개발을 위한 지침)

  • 이낙영;김종걸;권영일;홍연웅;전영록;나명환
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.269-269
    • /
    • 2001
  • Maintainability refers to the ease with which maintenance work can be done. It involves the process of ensuring that products can be easily and safely maintained and that the maintenance support requirement is minimized. When a product has a reasonably long life, the cost of operation and support during that life can greatly exceed the initial capital cost. The value to the customer of optimizing maintainability should be evident. Some effort and expense applied to achieving a product which can be easily and cheaply maintained will make very significant savings in the life cycle costs. In this paper, the International Standard IEC 60300-3-10, which is the application guide for maintainability, is considered. This standard can be used to implement a maintainability program covering the initiation, development and in-service phases of a product. It provides guidance on how the maintenance aspects of the tasks should be considered in order to achieve optimum maintainability. The elements of a maintainability program, which are maintenance policy and concept, maintainability studies, project management, design for maintainability, analysis and prediction methods, maintenance verification and validation, analysis of life cycle cost, maintenance support planning, and collection and analysis of maintenance data, are fully discussed in this paper.

  • PDF

Research on optimal cost calculation for efficient maintenance of offshore wind farms (해상풍력단지의 효율적인 유지보수를 위한 최적 비용 산출 연구)

  • Hui-Seok Gu;In-Cheol Kim;Man-Bok Kim;Man-Soo Choi
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This paper aims to perform optimal operation and maintenance with an integrated monitoring system for offshore wind platforms. Based on the wind direction and wind speed data of existing wind farms, a monitoring system was established along with weather and weather data to maximize the operational efficiency of wind farms. Compared to wind power on land, offshore wind power is difficult to maintain due to weather, logistics and geographical limitations. Therefore, economic analysis of actual operation and maintenance is essential for large-scale offshore wind farms. In this paper, the availability of offshore wind farms was analyzed by using personnel resources, parts inventory, Crew Transfer Vessel (CTV) and Specialized service Operation Vessel (SOV) etc. before the actual operation and maintenance of wind farms. A comparative analysis was conducted to determine the optimum operating efficiency and economical maintenance costs.

Life-Cycle Cost Optimization for Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF