• 제목/요약/키워드: optimum maintenance

검색결과 377건 처리시간 0.032초

증기발생기 최적 교체시기 결정에 관한 연구 (Optimum Replacement Times for a Steam Generator)

  • 허정훈;윤원영
    • 산업공학
    • /
    • 제15권1호
    • /
    • pp.89-98
    • /
    • 2002
  • This paper considers the optimum replacement times of a steam generator in nuclear power plant with failure data. It is assumed that the failure pattern of units is given as a Weibull distribution and repair and periodic preventive maintenance are performed periodically. The maximum likelihood method is used to estimated the Weibull parameters of failure distribution from failure data. Relpacement, output-decresing and maintenance costs are considered to determine the optimal replacement times by simulation. Numerical examples are included with actual failure data and cost estimators.

휨부재의 실시간 상태 평가를 위한 최적변위 계측 (The optimum displacement measurement to estimate realtime states of Beam structure)

  • 김형중;김성남;박남회;박종섭;임정순;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2006
  • Recently, several displacement measuring instruments such a GPS are substantially developed by development of an artificial satellite. Considering this trend, in future displacement measurement will be a very efficiency method, therefore we need to develop structure maintenance & management by using displacement measuring instruments. In this study, I suggest to maintenance & management method about simple beams and cantilever beams which are very important structurein civil engineering by using displacements. I suggest a system which trace behavior of beams by combining some measurement points and a specific displacement function and research that tl1e proper number of measurement and optimum measurement points to efficiently use the system.

  • PDF

Lagrange Multipliers에 의한 슬래브시스템의 신뢰성 최적설계 (Reliability Optimum Design of Slab System based on Lagrange Multipliers)

  • 김현석;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.113-124
    • /
    • 1997
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering exprience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on two-way slab system which could possibly replace optimum design based traditional provisions of the current code, based on the AFOSM reliablity theory.

  • PDF

765kV 송전선로 정비최적방안 연구 (A Study of Optimum Methods for 765kV Transmission Line Maintenance)

  • 배상길;구회곤;황경석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.300_301
    • /
    • 2009
  • 765kV Transmission line is retained and operated by KEPCO(Korea Electric Power Corporation), and KPS(Korea Power Plant Service & Engineering) has been taking charge of maintenance service. KPS is doing characteristic maintenance and inspection for 765kV lines for example preventive patrol, routine patrol(every 6-month), and close inspection(every 5-year), This paper presents the optimum maintenance methods and the related standards for 765kV line. This result will use to stabilize of 765kV lines.

  • PDF

유전 알고리즘에 의한 플랜트 보전을 위한 최적검사기간 결정 방법론 (Decision-making Method of Optimum Inspection Interval for Plant Maintenance by Genetic Algorithms)

  • 서광규;서지한
    • 산업경영시스템학회지
    • /
    • 제26권2호
    • /
    • pp.1-8
    • /
    • 2003
  • The operation and management of a plant require proper accounting for the constraints coming from reliability requirements as well as from budget and resource considerations. Most of the mathematical methods to decide the inspection time interval for plant maintenance by reliability theory are too complicated to be solved. Moreover, the mathematical and theoretical models are not usually cases in the practical applications. In order to overcome these problems, we propose a new the decision-making method of optimal inspection interval to minimize the maintenance cost by reliability theory and genetic algorithm (GA). The most merit of the proposed method is to decide the inspection interval for a plant machine of which failure rate $\lambda$(t) conforms to any probability distribution. Therefore, this method is more practical. The efficiency of the proposed method is verified by comparing the results obtained by GA-based method with the inspection model haying regular time interval.

철도신호설비 유지보수주기 할당에 관한 연구 (Study on the maintenance period allocation method for railway signal equipment)

  • 이강미;신덕호;이재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.647-652
    • /
    • 2008
  • Railway signal system has been more complex, larger and required high reliability. So, maintenance by experience must be changed to optimize maintenance program or introduced systematic method for estabilish new maintenance program. In this paper, we introduced the maintenance period decision method which are Age based method and Block replacement method based on the failure distribution for the equipment. So, we allocated optimum maintenacne period for the railway signal equipment using block replacement method.

  • PDF

최적신뢰성에 의한 P.S.C Box Girder교의 연구 (A Study on Optimum Reliability of P.S.C Box Girder Bridge)

  • 정철원;유한신;나기현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.139-144
    • /
    • 1999
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabiliistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on P.S.C Box Girder Bridge system which could possibly replace optimum design based traditional provisions of the current code, based on the Neldel-Mead Method reliability theory.

  • PDF

생애주기 성능 및 비용에 기초한 교량 유지관리기법 개발 (Development of Bridge Maintenance Method based on Life-Cycle Performance and Cost)

  • 박경훈;공정식;황윤국;조효남
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.1023-1032
    • /
    • 2006
  • 본 논문에서는 기존 교량 유지관리방법의 한계를 극복하고 예방유지관리 체계의 구현을 위하여 새로운 교량 유지관리기법을 제안하였다. 제안된 방법은 생애주기비용뿐만 아니라 생애주기성능을 함께 고려하여 열화되는 교량의 최적 유지관리전략을 수립할 수 있다. 교량의 성능변화는 신뢰성에 기초한 안전도와 상태등급을 세분화한 상태지수에 의해 평가되며, 생애주기 비용은 직접유지관리비용뿐만 아니라 도로이용자비용과 파손비용을 고려하여 추정하였다. 교량수명 동안의 성능 및 비용과 관련된 다중목적 조합 최적화 문제인 교량 유지관리 시나리오 집합의 생성을 위해 유전자알고리즘을 적용하였다. 개발된 방법을 실교량에 적용하여 유지관리전략 수립의 과정과 효과를 고찰하였다. 이러한 결과를 통해, 개발된 방법은 유지관리를 위한 의사결정과정에 효과적으로 활용될 수 있을 것으로 판단된다.

Generalized Reliability Centered Maintenance Modeling Through Modified Semi-Markov Chain in Power System

  • Park, Geun-Pyo;Heo, Jae-Haeng;Lee, Sang-Seung;Yoon, Yong-Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.25-31
    • /
    • 2011
  • The purpose of power system maintenance is to prevent equipment failure. The maintenance strategy should be designed to balance costs and benefits because frequent maintenance increases cost while infrequent maintenance can also be costly due to electricity outages. This paper proposes maintenance modeling of a power distribution system using reliability centered maintenance (RCM). The proposed method includes comprehensive equipment modeling and impact analysis to evaluate the effect of equipment faults. The problem of finding the optimum maintenance strategy is formulated in terms of dynamic programming. The applied power system is based on the RBTS Bus 2 model, and the results demonstrate the potential for designing a maintenance strategy using the proposed model.