• Title/Summary/Keyword: optimum blank shape

Search Result 48, Processing Time 0.022 seconds

Optimum Blank Design of Automobile Sub-Frame (우물정자형 Sub-frame의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.185-195
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shape and target contour shape into account. Based on the method, a computer program composed of blank design module, FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modifications. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed. The thickness distribution and the level of punch load is improved. Also, the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정(井)자형 Sub-frame의 블랭크 설계)

  • Kim, Jong-Yop;Kim, Nak-Soo;Heo, Man-Seong
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.260-273
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shaped and target contour shape into account. Based on the method a computer program composed of blank design module FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modification. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed, The thickness distribution and the level of punch load is improved. Also the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Formability of deep drawing process for L-shape cross section (L형 단면 딥드로잉 가공에서의 성형성)

  • 김상진;양대호;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.16-22
    • /
    • 1996
  • Two kinds of blank shapes, optimum and square, are adopted to investigate formbility. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose , rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup detph and strain distribution are measured experimetally for the products of the two kinds of blank shapes, which are optimum and square.It is confirmed that deeper cup without severe thickness reduction can be obtained fro the optimum shape.

  • PDF

Experimental Determination of the Optimum Blank Shape in Rectangular Cup Drawing (사각 컵 드로잉 공정에서의 최적 블랭크 형상 결정)

  • 배원병;허병우;김호윤;이영석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.68-71
    • /
    • 1998
  • Rectangular deep drawing process is widely used in sheet metal forming. But there are various defects such as earring, wrinkling, tearing, etc. In order to avoid the defects, an optimum blank shape is required. But it has not been generalized to determine the optimum blank shape because deep drawing processes are involved in complex process parameters. So, it is very necessary to do research systematically about determining the optimum blank shape of deep drawing process. In this study a rectangular cup drawing test has been carried out to determine the optimum blank shape for various stainless steel sheets. From the test, a new blank model, which has no earring, is proposed.

  • PDF

Experimental Determination of the Optimum Blank Shape in Rectangular Cup Drawing

  • Bae, Won-Byong;Kim, Ho-Yoon;Hwang, Bum-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.5-8
    • /
    • 2003
  • The rectangular deep drawing process is widely used in sheet metal forming, but there are various associated defects, such as earing, wrinkling, tearing, etc. In order to avoid such defects, an optimum blank shape is required. Such an optimum blank shape cannot be generalized because deep drawing processes are involved in complex process parameters. So, it is necessary to do systematic research to determine the optimum blank shape for the deep drawing process. In this study, a rectangular cup drawing test has been carried out to determine the optimum blank shape for various stainless steel sheets. From the test, a new blank model, which has no earing, is propsed.

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Optimum design of blank shape for press forming (최적 프레스가공을 위한 블랭크형상 설계)

  • Kim, Yeong-Seok;Park, Gi-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1141-1148
    • /
    • 1997
  • In the stamping industry the blank shape to be stamped into a designed shape has been conventionally determined from the try out process by the press engineers. The work needs a lot of time and thus leads a loss of productivity. In this study boundary element method for 2-dimensional potential problem was used to design optimum blank shapes for irregular press forming. Here we assumed that the blank is controlled by blank holder only and material flow at blank holder was under potential flow. The developed PC code for designing the optimum blank shape shows that the blank shapes for optimal drawing can be calculated within a few minute in pentium PC and the calculated shapes agree well with the experiments. However the application of this method is constrained only to the pressed product with flat bottom.

The blank design and the formability for the multi-stage deep drawing process (다단계 디프드로잉가공에서의 소재형상설계 및 성형성)

  • 박민호;김상진;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.111-118
    • /
    • 1995
  • A method of determining an optimum blank shape for the non circular deep drawing process is more investigated and applied to the balnk design for multi-stage deep drawn product. The forming procedure of two-stage deep drawing process is looked over and the method of determining a blank shape is proposed. In experimental research, a optimum blank and a optional rectangular blank were considered and we measured thickness strain distributions. We could predict a strain distribution and compare with a experimental strain distribution. Also, the strain distributions for the blank shapes, optimum and rectangular, were compared.

  • PDF

Experimental Study on the Deep Drawing Process for L-shape Cross Section (L형 단면의 ?드로잉 가공에 대한 실험적 연구)

  • 김상진;양대호;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.281-287
    • /
    • 1996
  • Two kinds of blank shapes optimum and square are adopted to investigate formability. Optimum blank shape is determined to construct an L-shape cup with uniform height and without flange part. For this purpose rigid-plastic FEM analysis is applied with backward tracing technique. Maximum cup depth and strain distribution are measured experimentally for the products of the two kinds of blank shapes which are optimum and square. it is confirmed that deeper cup without severe thickness reduction can be obtained from the optimum shape.

  • PDF

A Study on the Optimal Blank Shape of the Axisymmetric Deep Drawing Process (축대칭 ?드로잉 공정의 최적 블랭크 형상에 관한 연구)

  • 천석규;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.237-241
    • /
    • 1998
  • This study is concerned with the optimum blank design which is able to minimize earing phenomena. A new analytic method is proposed to determine the optimum blank shape only using the tension test and standard deep drawing tests. Introducing a dimensionless parameter related to the earing and using a Fourier analysis, the optimum blank shape can be obtained by R-value and the tested results. The theoretical results by the proposed method are good agreement with the experimental results through several deep drawing tests using steel as working materials.

  • PDF