• Title/Summary/Keyword: optimum TMD parameters

Search Result 19, Processing Time 0.019 seconds

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan;Rizzi, Egidio
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.231-256
    • /
    • 2016
  • This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Proposing optimum parameters of TMDs using GSA and PSO algorithms for drift reduction and uniformity

  • Mirzai, Nadia M.;Zahrai, Seyed Mehdi;Bozorgi, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.147-160
    • /
    • 2017
  • In this study, the optimum parameters of Tuned Mass Dampers (TMDs) are proposed using Gravity Search Algorithm (GSA) and Particle Swarm Optimization (PSO) to reduce the responses of the structures. A MATLAB program is developed to apply the new approach to the benchmark 10 and 40-story structures. The obtained results are compared to those of other optimization methods used in the literature to verify the developed code. To show the efficiency and accuracy of the proposed methods, nine far-field and near-field worldwide earthquakes are applied to the structures. The results reveal that in the 40-story structure, GSA algorithm can reduce the Relative Displacement (RD) and Absolute Acceleration (AA) up to 43% and 21%, respectively while the PSO decreases them by 50% and 25%, respectively. In contrast, both GSA and PSO algorithms reduce the RD and AA about 29% and 21% for the 10-story structure. Furthermore, using the proposed approach the required TMD parameters reduce by 47% and 63% in the 40 and 10-story buildings in comparison with the referenced ones. Result evaluation and related comparison indicate that these methods are more effective even by using smaller TMD parameters resulting in the reduction of acting force from TMD, having smaller stiffness and damping factors while being more cost effective due to its decreased parameters. In other words, the TMD with optimum parameters can play a positive role in both tall and typical structures.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Tuned mass dampers for torsionally coupled systems

  • Pansare, A.P.;Jangid, R.S.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.23-40
    • /
    • 2003
  • The steady state response of a torsionally coupled system with tuned mass dampers (TMDs) to external wind-induced harmonic excitation is presented. The torsionally coupled system is considered as one-way eccentric system. The eccentricity considered in the system is accidental eccentricity only. The performance of single tuned mass damper (TMD) optimally designed without considering the torsion is investigated for the torsionally coupled system and found that the effectiveness of a single TMD is significantly reduced due to torsion in the system. However, the design of TMD system without considering the torsion is only justified for torsionally stiff systems. Further, the optimum parameters of a single TMD considering the accidental eccentricity are obtained using numerical searching technique for different values of uncoupled torsional to lateral frequency ratio and aspect ratio of the system. The optimally designed single TMD system is found to be less effective for torsionally coupled system in comparison to uncoupled system. This is due to the fact that a torsionally coupled system has two natural frequencies of vibration, as a result, at least two TMDs are required which can control both lateral and torsional response of the system. The optimum damper parameters of different alternate arrangements such as (i) two identical TMDs placed at opposite corners, (ii) two independent TMDs and (iii) four TMDs are evaluated for minimum response of the system. The comparative performance of the above TMDs arrangements is also studied for both torsionally coupled and uncoupled systems. It is found that four TMDs arrangement is quite effective solution for vibration control of torsionally coupled system.

Use of semi-active tuned mass dampers for vibration control of force-excited structures

  • Setareh, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.341-356
    • /
    • 2001
  • A new class of semi-active tuned mass dampers, named as "Ground Hook Tuned Mass Damper" (GHTMD) is introduced. This TMD uses a continuously variable semi-active damper (so called 'Ground-Hook') in order to achieve more reduction in the vibration level. The ground-hook dampers have been used in the auto-industry as a means of reducing the vibration of primary suspension systems in vehicles. This paper investigates the application of this damper as an element of a tuned damper for the vibration reduction of force-excited single degree of freedom (SDOF) models that can be representative of many structural systems. The optimum design parameters of GHTMDs are obtained based on the minimization of the steady-state displacement response of the main mass. The optimum design parameters which are evaluated in terms of non-dimensional values of the GHTMD are obtained for different mass ratios and main mass damping ratios. Using the frequency responses of the resulting systems, performance of the GHTMD is compared to that of equivalent passive TMD, and it is found that GHTMDs are more efficient. A design methodology to obtain the tuning parameters of GHTMD using the relationships developed in this paper is presented.

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

The Properties of Optimal Passive Tuned Mass Dampers (최적 수동 동조질량감쇠기의 특성)

  • 노필성;강병두;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.165-172
    • /
    • 1996
  • Recently, the response of a high-rise building to external dynamic force created by wind and earthquake has received much attention. This response is dependent on wind intensity, surrounding environment, building size, shape, mass, stiffness and amount of energy dissipation available in the system. The study has been done on these parameters. Attempts have been made to increase the damping in building system and thereby reduce structural response. These attempts have centered on adding an energy-dissipative system(passive tuned mass damper; passive TMD) to the building system and increasing the overall effective damping. In this paper the optimum condition of passive TMD will be derived with respect to random excitation and the properties of the optimum condition will have been studied.

  • PDF