• Title/Summary/Keyword: optimum P$_2$O$_{}$ 5/ rate

Search Result 141, Processing Time 0.027 seconds

Effect of O2 Partial Pressure on AlOx Thin Films Prepared by Reactive Ion Beam Sputtering Deposition

  • Seong, Jin-Wook;Yoon, Ki-Hyun;Kim, Ki-Hwan;Beag, Young-Whoan;Koh, Seok-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.364-369
    • /
    • 2004
  • The barrier and optical properties of AlO$_{x}$ thin films on polycarbonate deposited by Reactive Ion Beam Sputtering (RIBS) were investigated at different oxygen partial pressure. We measured the deposition rate of AlO$_{x}$ thin films. As the oxygen partial pres-sure increased, the deposition rate increased then decreased. The changes of deposition rate are associated with the properties of deposited films. The properties of deposited AlO$_{x}$ thin films were studied using X-ray Photoelectron Spectroscopy (XPS), Scan-ning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Optimum deposition parameters were found for fabricat-ing aluminum oxide thin films with high optical transparency for visible light and low Oxygen Transmission Rate (OTR). The optical transmittance of AlO$_{x}$ thin film deposited on polycarbonate (PC) showed the same value of bare PC.bare PC.

Color Removal of Rhodamine B by Photoelectrocatalytic Process Using Immobilized TiO2 (고정화 광촉매를 이용한 광전기촉매 공정에서 Rhodamine B의 색도 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.226-232
    • /
    • 2008
  • A feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B (RhB) was performed in a photoelectrochemical reactor with immobilized $TiO_2$ particle. The effects of operating conditions, such as current, electrolyte and pH were evaluated. The experimental results showed that optimum $TiO_2$ dosage and current in the photoelectrocatalytic process were 83.3 g/l and 0.5 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes (photocatalytic and electrolytic process). The addition of NaCl increased the initial decolorization rate and reduced reaction time. The optimum dosage of NaCl was 0.15 g/l. The decolorization rate of the photoelectrocatalytic process increased sharply with a decrease in pH value. However when the NaCl was added, the pH effect was not high.

Photocatalytic Decolorization of Dye usingUV/TiO2 and Fluidized Bed Reactor (UV/TiO2와 유동층 반응기를 이용한 안료의 광촉매 탈색)

  • Park Young-Seek
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.921-928
    • /
    • 2004
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and fluidized bed reactor. Immobilized $TiO_2$(length: 1$\~$2 mm, width: 1$\~$3 mm, thickness: 0.5$\~$2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, $H_2O_2$ and anion additives. ($NO_3^{-},\;SO_4^{2-},\;Cl^{-},\;CO_3^{2-}$) The results showed that the optimum dosage of the immobilized $TiO_2$ were 87.0 g/L. Initial removal rate of RhB of the immobilized $TiO_2$ was 1.5 times higher than that of the powder $TiO_2$ because of the adsorption onto the surface of immobilized $TiO_2$ In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.

An Investigative Study on the Characterization of Cefaclor Decomposition in UV/H$_2$O$_2$ Process (UV/H$_2$O$_2$공정에 의한 Cefaclor 분해 특성에 관한 기초연구)

  • Cho, Chun-Ki;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1039-1046
    • /
    • 2008
  • The combining process of UV irradiation and H$_2$O$_2$ was used to investigate characteristics of cefaclor decomposition in the aquatic environment. The separate mixing tank was used to minimize the decreasing effective of contact area caused by sampling. Four baffles were installed inside the UV reactor for the complete mixing of the sample and outside of the reactor was wrapped with aluminum foil to protect the emission of photon energy. Production of OH radical was measured using pCBA(p-Chlorobenzoic acid) indirectly and rate constants were withdrawn pseudo-frist order reaction. Optimum condition for the maximum production of OH radical was found to be pH 3, hydrogen peroxide of 5 mmol/L and recirculation rate of 400 mL/min. Pseudo-frist order reaction rate constant was 0.1051 min$^{-1}$. In the optimum condition, cefaclor was completely decomposed within 40 min and rate constant was 0.093 min$^{-1}$. Decomposition by OH radical producted intermediate anions such as chloride, nitrate, sulfite and acetic acid and phenylglycine. After 6 hr most cefaclor was decomposed by UV/H$_2$O$_2$ process and converted to CO$_2$ and H$_2$O, resulting of operation in the decrease of TOC and acetic acid and the disappearance of phenylglycine.

Optimization of Substract Concentration in Cell Production of Fungal Chitosan (균류키토산의 균체생산에서 기질농도 최적화에 관한 연구)

  • 김봉섭;서명교;노종수;이용희;이국의
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2003
  • In the process of producing chitosan from crustacean shell, the use of excessive acid and alkli is causing the problems of environmental pollution and of production cost. In this study, one way to solve these problems is to cultivate fungi, then, to extract chitosan from the cell wall. By means of flask incubation and batch cultivation, the optimum cultivation conditions for mass production of continuous cultivation was found. Four strains used for the production of fungal chitosan were Gongronella butleri IF08080, Absidia coerulea IF05301, Rhizopus delemar IF04775, Mucor tuberculisporus IF09256. In flask incubation to select strain of producing much chitosan by means of experiment of the effect of initial pH, Absidia coerulea IFO 5301 had highest yield in FCs, 258.1 $\pm$ 47.3 mg/200 $m\ell$l at pH 6.5. In flask incubation under the optimum cultivation condition, temperature 27$^{\circ}C$, culture time 6days, glucose 2%, peptone 1%, (NH$_4$)$_2$ SO$_4$ 0.5%, $K_2$HPO$_4$ 0.1 %, Nacl 0.1 %, MgSO$_4$ㆍ7$H_2O$ 0.05%, CaCl$_2$ㆍ2$H_2O$ 0.01 %, the yield of DCW brought the highest yields. In batch bioreactor, the optimum cultivation condition was that cell suspended solution was 70 $m\ell$, aeration rate 0.5 l/min, agitation rate 800 rpm, culture time 36 hr. In continuous bioreactor, the optimum substrate flow rate was 4 ι/day.

Investigation of an Optimum Application Rate of Blended Biochar Pellet as Slow Release Fertilizer during Cabbage Cultivation (배추재배 시 바이오차 펠렛 완효성 비료의 적정 시용량 구명)

  • Kim, HuiSeon;Yun, SeokIn;Jang, Eunsuk;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2019
  • This experiment was conducted to select an optimum application rate of blended biochar pellet as slow release fertilizer during cabbage cultivation. The blended biochar pellet made with a combination(4:6) of biochar and pig manure compost with unloading N, P, K solutions for adjusting about 9% of total nitrogen(TN). The treatments were consisted of the control as recommended application rates for cabbage cultivation in National Institute of Agricultural Sciences, N 40%, N 40% and 0.07M MgO and N 60 % of the blended biochar pellet, respectively, based on nitrogen application of recommended rates to cabbage cultivation. Changes of $NH_4-N$, $NO_3-N$, $P_2O_5$ and $K_2O$ concentrations in the soil and growth characteristic and yield components were investigated and observed during the cabbage cultivation. The experimental result shown that contents of $NH_4-N$, $NO_3-N$ and $K_2O$ of soil in the N 40% were significantly difference(p<0.01) with the control. $P_2O_5$ concentrations of soil in the N 40% were highest among the treatments. The fresh weight per cabbage in the N 40% was not significantly different(p>0.05) from the control, but in the N 40% and 0.07M MgO and N 60% was lower than that of the control. It was considered that an optimum blended biochar application rate for cabbage cultivation was 40% of recommended nitrogen application.

Effects of Fertilizer Levels on Dry Matter Yield and Nutritional Quality of Forage Rye

  • Kwon, Byung-Sun
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.181-186
    • /
    • 2004
  • To find out the optimum fertilizer level for high yielding variety, Paldanghomil, experiment was conducted with 15 compositions of fertilizer levels at the experiment field of forage rye in Sunchon National University from Sep. 1998 to Aug. 1999. The effects of nitrogen fertilizer on plant growth were large significant but increasing rate of application in potassium and phosphate fertilizers above 10kg/10a had negligible effects on plant growth. Raising nitrogen application rate of fertilizers turned out to be 18-10-10kg/l0a of N-P$_2$O$_{5}$-K$_2$O. Content of crude protein was the highest and that of crude fiber such as NDF, ADF, cellulose and lignin were lowest at this rate. Furthermore, IVDMD was high and dry matter yield were the highest at the optimum rate.e.

  • PDF

The Effect of Ozone of the Improvement of Dehydration in Treatment of Sewage Sludge Measuring SRF (SRF측정에 의한 하수슬러지의 탈수 개선을 위한 오존 효과)

  • 황상용;손종렬;이용성
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.44-50
    • /
    • 1993
  • This paper has concentrated on estimating the improvement of sludge dewaterability for the application of ozone in sewage treatment plant sludge. The experiment for the study was conducted by batch reactor, contacting ozone (5.0 g O$_3$/hr/l) to waste sludge and measured the Specific Resistance to Filtrate (SRF) varying pH, pressure and reaction time of ozone. And then checked the dissolved solids concentration of flitrate. The results of experiment were as follows: 1. When the total solids concentration of excess sludge was 9, 000 mg/l, the optimum injection rate of ozone was 5.0 g O$_3$/hr/l, and then pressure was 50 cm Hg for the measuring SRF. 2. In the range of pH 3~5, the effect of ozone injection was excellent, but it was unsatisfactory in the range of pH 9~11. Therefore, the ozone injection by acidifying pH level was effective in improving the dewaterability of sludge. 3. It was estimated that the dissolved solids concentration of flitrate was increased in proportion to the injection rate of ozone.

  • PDF

Reactive ion etching of InP using $BCl_3/O_2/Ar$ inductively coupled plasma ($BCl_3/O_2/Ar$ 유도결합 플라즈마를 이용한 InP의 건식 식각에 관한 연구)

  • 이병택;박철희;김성대;김호성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.541-547
    • /
    • 1999
  • Reactive ion etching process for InP using BCl3/O2/Ar high density inductively coupled plasma was investigated. The experimental design method proposed by the Taguchi was utilized to cover the whole parameter range while maintaining reasonable number of actual experiments. Results showed that the ICP power and the chamber pressure were the two dominant parameters affectsing etch results. It was also observed that the etch rate decreased and the surface roughness improved as the ICP power and the bias voltage increased and as the chamber pressure decreased. The Addition of oxygen to the gas mixture drastically improved surface roughness by suppressing the formation of the surface reaction product. The optimum condition was ICP power 600W, bias voltage -100V, 10% $O_2$, 6mTorr, and $180^{\circ}C$, resulting in about 0.15$\mu\textrm{m}$ etch rate with smooth surfaces and vertical mesa sidewalls Also, the maximum etch rate of abut 4.5 $\mu\textrm{m}$/min was obtained at the condition of ICP power 800W, bias voltage -150V, 15% $O_2$, 8mTorr and $160^{\circ}C$.

  • PDF

A study on the corrosion characteristics of carbon steel pipes by phosphate corrosion inhibitor (인산염계 부식억제제에 의한 탄소강관의 부식특성 연구)

  • Woo, Dal-Sik;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.493-499
    • /
    • 2008
  • This study was performed to estimate the water quality parameters on corrosion such as pH, turbidity, Fe released concentration, corrosion rate by using batch reactor for corrosion control of phosphate corrosion inhibitor in carbon steel pipes. The pH, conductivity, alkalinity, and Ca hardness showed a slight change for dosing the phosphate corrosion inhibitor with carbon steel pipe in batch reactor. The turbidity was about ten times lower with 5 mg $P_2O_5/L$ of the corrosion inhibitor than that without. The Fe released concentration and corrosion rate was decreased by about 12.2, 24 times with 5 mg $P_2O_5/L$ of the corrosion inhibitor than that without. In conclusion, the optimum concentration of the phosphate corrosion inhibitor was found to be 5 mg $P_2O_5/L$. The effect of the corrosion inhibitor was significant for the carbon steel plate samples tested in this study. The corrosion inhibitor can be an effective cure for corrosion and red water problem preventing the service pipe from further corrosion.