• Title/Summary/Keyword: optimizing

Search Result 2,916, Processing Time 0.023 seconds

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

Fabrication of High Density and High Uniformity Irradiation Light Source for Exposure Curing System Using 365 nm and 385 nm Wavelength SMD LED and High Transmittance Silicone Resin TIR Bar Type Lens (365 nm 및 385 nm SMD LED와 TIR 바형 렌즈를 이용하는 고밀도 고균일성 특성의 경화용 광원모듈 제작 )

  • Pil Hong Jeong;Beom Jin Kim;Yeong Jin Kim;Dong Gyu Jeon;Hyo Min Kim;Jae Hyeon Kim;Hyeong Min Kim;Gyu Seong Lee;Kawan Anil;Eung Ryul Park;Soon Jae Yu;Min Jun Ann;Do Won Hwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2024
  • An irradiator is developed using two UVA wavelength ranges of SMD LEDs as a curing light source. This module has dimensions of 545×111×300 mm3 and is equipped with a TIR bar-shaped lens made of PDMS silicone resin. The developed irradiator offers high uniformity, with 89% in the centerline of the horizontal axis direction, for two different wavelength ranges of 365 nm and 385 nm. The radiation intensity from the light source module shows highly directional characteristics, and the irradiator provides a maximum irradiance of 1,634 mW/cm2 at a working distance of 50 mm. During the initial 5 minutes of operation, the irradiance experiences a rapid decrease. However, this issue is addressed by optimizing the LED's current reduction characteristics and managing the Transistor's temperature rise in the constant current circuit. After continuous operation for approximately 60 minutes. The highest temperature, near the central part of the irradiating surface, reaches 69.7℃, while the lowest temperature, near the edges, is 41.1℃.

A Study on Operating Vertiport Cooperative Decision Making (버티포트 협력적 의사결정지원체계 운용방안연구)

  • Jae-wook Chun;Ye-seung Hwang;Gang-san Kim;Eui Jang;Yeong-min Sim;Woo-choon Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.690-698
    • /
    • 2023
  • Information sharing and decision making between airport stakeholders became possible after the introduction of airport cooperative making system (A-CDM). This also resulted in optimizing aircraft handling time and increased the efficiency of aircraft operations. Technological advances have recently led to the development of urban air mobility (UAM) which is a small aircraft taking off and landing vertically. It is emerging as a new air transportation system in the future due to its advantage of saving time and solving congestion problem in the urban area. This study aims to suggest how vertiport cooperative decision making system (V-CDM) should be managed for efficient operation of UAM. By establishing procedure for decision making system based on Vertiport ecosystem of UAM. By establishing procedure for decision making system based on Vertiport ecosystem and UAM aircraft, unnecessary flight delays or cancellations can be minimized and efficiency of UAM operation will be improved as well.

Synergistic Inhibition of Burkitt's Lymphoma with Combined Ibrutinib and Lapatinib Treatment (Ibrutinib과 Lapatinib 병용 치료에 의한 버킷림프종의 상호 작용적 억제)

  • Chae-Eun YANG;Se Been KIM;Yurim JEONG;Jung-Yeon LIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.298-305
    • /
    • 2023
  • Burkitt's lymphoma is a distinct subtype of non-Hodgkin's lymphoma originating from B-cells that is notorious for its aggressive growth and association with immune system impairments, potentially resulting in rapid and fatal outcomes if not addressed promptly. Optimizing the use of Food and Drug Administration-approved medications, such as combining known safe drugs, can lead to time and cost savings. This method holds promise in accelerating the progress of novel treatments, ultimately facilitating swifter access for patients. This study explores the potential of a dual-targeted therapeutic strategy, combining the bruton tyrosine kinase-targeting drug Ibrutinib and the epidermal growth factor receptor/human epidermal growth factor receptor-2-targeting drug Lapatinib. Ramos and Daudi cell lines, well-established models of Burkitt's lymphoma, were used to examine the impact of this combination therapy. The combination of Ibrutinib and Lapatinib inhibited cell proliferation more than using each drug individually. A combination treatment induced apoptosis and caused cell cycle arrest at the S and G2/M phases. This approach is multifaceted in its benefits. It enhances the efficiency of the drug development timeline and maximizes the utility of currently available resources, ensuring a more streamlined and resource-effective research process.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Impact of Drying Temperature in High-Loading Positive Electrode Fabrication Process for Lithium-ion Batteries (리튬이온 이차전지용 고로딩 양극 제조공정에서 건조온도의 영향에 대한 연구)

  • Min Jin Kim;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • Among the electrode manufacturing processes for lithium-ion batteries, the drying process is crucial for production speed and process cost. Particularly, as the loading level of the electrode increases to enhance the energy density of the battery, optimizing process conditions for electrode drying becomes more critical. In this study, we compared the drying time and electrochemical performance of the positive electrode prepared at different drying temperatures. LiNi0.6Co0.2Mn0.2O2 (NCM622) was used as the active material and manufactured under various drying temperature conditions ranging from 120 ℃ to 210 ℃ at loading levels of 2.5 and 4.5 mAh cm-2. The physical and electrochemical properties of the electrodes were compared. As the loading level of the electrode increases, the drying time of the electrode also increases, but this time can be reduced by increasing the drying temperature. The drying temperature used in manufacturing the NCM622 positive electrode does not significantly affect the electrochemical performance but drying above 210 ℃ resulted in an increase in the volume resistivity of the electrode and a decrease in electrochemical performance. Accordingly, in the manufacture of high-loading electrodes, the drying temperature was increased to 190 ℃ to shorten the electrode manufacturing time without a loss of performance.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.

Scale-up Fabrication of Flat Sheet Membrane by Using a Roll-to-Roll Process (롤투롤 공정을 활용한 평판형 분리막의 대면적 제조 연구)

  • Dong Hyeok Baek;Youngmin Yoo;In-Chul Kim;You-In Park;Seung-Eun Nam;Young Hoon Cho
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • The flat sheet membrane, one of the representative forms of polymeric membranes, is widely used from material research in laboratories to commercial membrane production due to its ease of fabrication. Porous polymeric flat sheet membranes used in microfiltration and ultrafiltration are mainly fabricated through phase separation processes, utilizing non-solvent-induced and vapor-induced phase separation methods. However, due to the nature of phase separation processes, variations between samples can easily occur depending on the surrounding environment and the experimenter, making it difficult to ensure reproducibility. Therefore, for scaling up and ensuring reproducibility of developed membrane fabrication technologies, there is a need for a controlled environment continuous large-area production device, such as a roll-to-roll manufacturing system. This research compared the changes in membrane characteristics due to differences in manufacturing environments when scaling up laboratory-scale fabrication technologies to roll-to-roll processes using knife and slot die coaters. By optimizing the continuous manufacturing process factors, uniformity of the membrane was ensured during large-area production.