• 제목/요약/키워드: optimization technique

검색결과 2,697건 처리시간 0.03초

정량적 지표평가와 비용·편익 분석을 활용한 도심지 공동구의 타당성 평가기법 연구 (A study on the feasibility evaluation technique of urban utility tunnel by using quantitative indexes evaluation and benefit·cost analysis)

  • 이성원;정지승;나귀태;방명석;이정배
    • 한국터널지하공간학회 논문집
    • /
    • 제21권1호
    • /
    • pp.61-77
    • /
    • 2019
  • 밀집도가 높은 국내 기존 도심지를 대상으로 공동구를 새로이 계획할 경우에는 정량적 평가지표에 의한 타당성 평가시스템과 경제성 평가를 이용한 최적 설계용량 결정 등의 합리적인 의사결정 과정이 필요하다. 그러므로 이전 연구에서는 도심지 유형별 특성을 고려한 의사결정 계층구조를 구성하고 정량적 평가지표 항목에 대한 계층의사분석(AHP)을 통해서 개별 상위지표(3개) 부문과 하위지표(16개) 항목의 중요도 가중치를 제시하였다. 또한 도심지 공동구에 적합한 비용 편익 분석을 위해서 교통사고 감소효과, 차량소음 저감효과, 사회 경제적 손실 등의 3개 항목을 새로이 추가하여 10개의 편익 항목, 8개의 비용 항목을 고려한 경제성 평가방법이 제시되었다. 본 연구는 도로관리, 공공시설, 도시환경 부문의 하위 16개 평가지표의 중요도 가중치를 활용한 정량적 타당성 평가방법을 제시하고 서울시 주간선도로 123개 구간을 대상으로 타당성 평가를 실시하였다. 또한 타당성 평가결과와 경제성 평가결과를 비교하여 문제점을 분석하고 두 평가결과의 조합에 의한 종합평가 방법을 제시하였다. 본 연구에서 제시된 정량적 타당성 평가와 경제성 평가시스템의 로직을 프로그래밍하여 개발할 예정인 설계용량 최적화 프로그램은 도심지 공동구의 계획 및 설계 단계에서 활용되며 궁극적으로 도심지 공동구 활성화에 기여하게 될 것이다.

딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발 (Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment)

  • 나종호;공준호;이수득;신휴성
    • 터널과지하공간
    • /
    • 제33권4호
    • /
    • pp.281-298
    • /
    • 2023
  • 달 현지 탐사를 위해 무인 이동체에 대한 연구가 지속적으로 이루어져 있으며 달 지상 관심 지역의 정확한 위치 및 맵핑을 위한 실시간 정보화 작업이 요구되고 있다. 딥러닝 영상 처리 분석 기술을 실제 로버에 적용하기 위해 소프트웨어의 통합과 최적화에 대한 연구가 필요하며 본 연구에서는 가상의 달 기지 건설현장의 영상을 실시간 분석하여 핵심 객체의 공간 정보를 자동으로 수치화하는 방안에 대한 기초 연구가 진행되었다. 본 연구를 통해 이미 구축된 영역 분할 기반 객체 인식 알고리즘을 경계 상자 기반 객체 인식알고리즘으로 변경하여 객체 인식 정확도 및 추론 속도를 개선하는 작업이 이루어졌으며, 대용량 데이터 기반 객체 매칭 학습을 위해 Batch Hard Triplet Mining 기법을 도입하고, 학습 및 추론에 대한 최적화 연구가 수행되었다. 또한 개선된 객체 인식 및 동일 객체 매칭 소프트웨어를 통합하고, 입력 이미지 내 동일 객체 자동 매칭을 시각화하는 소프트웨어를 개발하였으며, 위성 모사 촬영 영상 내 객체를 학습 데이터로, 이동체 촬영 영상 내 객체를 추론 데이터로 사용하여 동일 객체 매칭의 학습 및 추론이 이루어졌다. 본 연구의 결과는 이동체의 연속 촬영 영상을 기반 3차원 공간 정보를 구현 및 관심 공간 내 객체 위치 설정에 활용할 수 있을 것으로 사료되며, 향후 달 기지 건설 현장에서의 영상 기반 시공 모니터링 및 제어를 위한 자동 현장 및 주요 대상물 공간 정보 구축 시스템과의 연계에 기여할 것으로 기대된다.

초자화 동결된 체외생산 소 배반포기배의 1 단계 융해 방법의 적정화 (Optimization of One-Step Dilution Method of Vitrified Bovine IVM/IVF/IVC Blastocysts)

  • 이금실;김은영;남화경;박세영;박은미;윤산현;박세필;정길생;임진호
    • 한국가축번식학회지
    • /
    • 제24권1호
    • /
    • pp.89-95
    • /
    • 2000
  • 본 실험은 초자화동결된 소 배반포기배를 실험현장에서 효율적으로 융해할 수 있는 기술을 찾고자 실시하였다. 초자화동결은 glycerol (G)과 ethylene glycol (EG) 그리고 10% FBS가 들어있는 m-DPBS를 이용하였으며, 배반포기배는 3단계로 초자화동결 되었는데, 10% G에 5분간 평형, 10% G와 20% EG에 5분간 평형, 그리고 25% G와 25% EG에 30초간 노출하였다. 질소 증기를 3분간 씌고 액화질소에 침지하였다. 융해는 straw 를 공기 중에서 10초간 노출시키고, $25^{\circ}C$ 물에서 빙정이 없어질 때까지 녹인 후 $25^{\circ}C$ 와 36$^{\circ}C$ 에 각각 시간차에 따라 처리군을 나누었다. 초자화동결된 배반포기배를 융해시 시간차에 따라 체외생존능은 융해 24시간과 48시간 후 재팽창과 완전탈출 배반포기배로 평가하였다. 그 결과를 요약하면 다음과 같다. 1) 초자화 동결된 배반포기를 융해시 시간차에 따라 체외생존농을 보았을 때, 1분으로 융해한 군이(86.6, 56.6%) 다른 처리군들보다 (2분 : 93.5, 35.4% ; 2.5분 : 76.9, 30.7% ; 3분 : 88.8, 36.1%; 3.5분 : 83.7, 8.1%) 체외생존능이 높게 나타났다. 2) 1분 융해방법으로 배반포기배의 발달단계에 따라 생존능을 조사하였을 때, 융해 48시간 후 빠르게 발달된 배반포기배의 부화율 (팽윤 : 93.8, 56.3% : 부화초기 : 86.2, 58.6%)은 느리게 발달하는 난자군의 부화율 (초기 : 83.3, 36.6%) 보다 높은 체외생존능을 나타내었다. 3) 또한, 1분 융해방법으로 배반포기배가 생산된 나이에 따라 체외생존능을 조사하였을 때, 융해 48시간 후, 7일 (66.6%) 과 8일 (60.0%)에 생산된 배반포기배가 9일 (22.7%)에 생산된 완전탈출 배반포기배율 보다 유의하게 높은 체외생존율을 나타내었다 (P<0.05). 그러므로 초자화동결된 배반포기배를 1분 융해방법으로 융해하였을 때 빠르고 효율적으로 체외생존능을 얻을 수 있음을 알 수 있었다.

  • PDF

지형정보 기반 조난자 행동예측을 위한 마코프 의사결정과정 모형 (MDP(Markov Decision Process) Model for Prediction of Survivor Behavior based on Topographic Information)

  • 손진호;김수환
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.101-114
    • /
    • 2023
  • 유사시 종심 깊숙한 곳에서 적을 타격하는 임무를 수행하는 항공기의 경우 격추될 위험에 항시 노출되어 있다. 현대전의 핵심 전투력으로써 최첨단의 무기체계를 운용하는 공중근무 요원은 양성하는데 많은 시간과 노력, 국가 예산이 소요되며 그들이 가진 작전 능력과 군사기밀이 매우 중요하기에 공중근무 요원의 생환은 매우 중요한 문제이다. 따라서, 본 연구에서는 적지에서 비상탈출한 조난자가 장애물을 피해 목표지점까지 도피·탈출을 시행할 경로를 예측하는 경로 문제를 연구하였으며 이를 통해 비상탈출한 조난자의 무사 생환 가능성을 높이고자 하였다. 본 연구 주제와 관련된 기존 연구들은 경로 문제를 네트워크 기반 문제로 접근하여 TSP, VRP, Dijkstra 알고리즘 등으로 문제를 변형하여 최적화 기법으로 접근한 연구가 있었다. 본 연구에서는 동적 환경을 모델링 하기에 적합한 MDP(마코프 의사결정과정)를 적용하여 연구하였다. 또한 GIS를 이용하여 지형정보 데이터를 추출하여 활용함으로써 모형의 객관성을 높였으며, MDP의 보상구조를 설계하는 과정에서 기존 연구 대비 모형이 좀 더 현실성을 가질 수 있도록 보다 상세히 지형정보를 반영하였다. 본 연구에서는 조난자가 지형적 이점을 최대한 이용함과 동시에 최단거리로 이동할 수 있는 경로를 도출하기 위하여 가치 반복법 알고리즘, 결정론적 방법론을 사용하였으며 실제 지형정보와 조난자가 도피·탈출 과정에서 만날 수 있는 장애요소들을 추가하여 모형의 현실성을 더하고자 하였다. 이를 통해 조난자가 조난 상황에서 어떠한 경로를 통해 도피·탈출을 수행할지 예측해 볼 수 있었다. 본 연구에서 제시한 모형은 보상구조의 재설계를 통해 여러 가지 다양한 작전 상황에 응용이 가능하며 실제 상황에서 조난자의 도피·탈출 경로를 예측하고 전투 탐색구조 작전을 진행시키는 데 있어 다양한 요소가 반영된 과학적인 기법에 근거한 의사결정 지원이 가능할 것이다.

사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석 (A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce)

  • 채승훈;임재익;강주영
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.53-77
    • /
    • 2015
  • 국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF