• Title/Summary/Keyword: optimization technique

Search Result 2,697, Processing Time 0.034 seconds

Estimating the water supply capacity of Hwacheon reservoir for multi-purpose utilization (다목적 활용을 위한 화천댐 용수공급능력 평가 연구)

  • Lee, Eunkyung;Lee, Seonmi;Ji, Jungwon;Yi, Jaeeung;Jung, Soonchan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.437-446
    • /
    • 2022
  • In April 2020, the Korean government decided to operate the Hwacheon reservoir, a hydropower reservoir to supply water, and it is currently under pilot operation. Through the pilot operation, the Hwacheon reservoir is the first among the hydropower reservoirs in Korea to make a constant release for downstream water supply. In this study, the water supply capacity of the Hwacheon reservoir was estimated using the inflow data of the Hwacheon reservoir. A simulation model was developed to calculate the water supply that satisfies both the monthly water supply reliability of 95% and the annual water supply reliability of 95%. An optimization model was also developed to evaluate the water supply capacity of the Hwacheon reservoir. The inflow data used as input data for the model was modified in two ways in consideration of the impact of the Imnam reservoir. Calculating the water supply for the Hwacheon reservoir using the two modified inflows is as follows. The water supply that satisfies 95% of the monthly water supply reliability is 26.9 m3/sec and 24.1 m3/sec. And the water supply that satisfies 95% of the annual water supply reliability is 23.9 m3/sec and 22.2 m3/sec. Hwacheon reservoir has a maximum annual water supply of 777 MCM (Million Cubic Meter) without failure in the water supply. The Hwacheon reservoir can supply 704 MCM of water per year, considering the past monthly power generation and discharge patterns. If the Hwacheon reservoir performs a routine operation utilizing its water supply capacity, it can contribute to stabilizing the water supply during dry seasons in the Han River Basin.

Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms (효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로)

  • Heo, Gwang-Hee;Lee, Chin-Ok;Seo, Sang-Gu;Jeong, Yu-Seung;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.23-32
    • /
    • 2020
  • The compression sensing technology, CAFB, was developed to obtain the raw signal of the target structure by compressing it into a signal of the intended frequency range. At this point, for compression sensing, the CAFB can be optimized for various reference signals depending on the desired frequency range of the target structure. In addition, optimized CAFB should be able to efficiently compress the effective structural answers of the target structure even in sudden/dangerous conditions such as earthquakes. In this paper, the targeted frequency range for efficient structural integrity monitoring of relatively flexible structures was set below 10Hz, and the optimization method of CAFB for this purpose and the seismic response performance of CAFB in seismic conditions were evaluated experimentally. To this end, in this paper, CAFB was first optimized using Kobe seismic waveform, and embedded it in its own wireless IDAQ system. In addition, seismic response tests were conducted on two span bridges using Kobe seismic waveform. Finally, using an IDAQ system with built-in CAFB, the seismic response of the two-span bridge was wirelessly obtained, and the compression signal obtained was cross-referenced with the raw signal. From the results of the experiment, the compression signal showed excellent response performance and data compression effects in relation to the raw signal, and CAFB was able to effectively compress and sensitize the effective structural response of the structure even in seismic situations. Finally, in this paper, the optimization method of CAFB was presented to suit the intended frequency range (less than 10Hz), and CAFB proved to be an economical and efficient data compression sensing technology for instrumentation-monitoring of seismic conditions.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

A study on the Degradation and By-products Formation of NDMA by the Photolysis with UV: Setup of Reaction Models and Assessment of Decomposition Characteristics by the Statistical Design of Experiment (DOE) based on the Box-Behnken Technique (UV 공정을 이용한 N-Nitrosodimethylamine (NDMA) 광분해 및 부산물 생성에 관한 연구: 박스-벤켄법 실험계획법을 이용한 통계학적 분해특성평가 및 반응모델 수립)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2010
  • We investigated and estimated at the characteristics of decomposition and by-products of N-Nitrosodimethylamine (NDMA) using a design of experiment (DOE) based on the Box-Behken design in an UV process, and also the main factors (variables) with UV intensity($X_2$) (range: $1.5{\sim}4.5\;mW/cm^2$), NDMA concentration ($X_2$) (range: 100~300 uM) and pH ($X_2$) (rang: 3~9) which consisted of 3 levels in each factor and 4 responses ($Y_1$ (% of NDMA removal), $Y_2$ (dimethylamine (DMA) reformation (uM)), $Y_3$ (dimethylformamide (DMF) reformation (uM), $Y_4$ ($NO_2$-N reformation (uM)) were set up to estimate the prediction model and the optimization conditions. The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were $Y_1$ [% of NDMA removal] = $117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$= 96%, Adjusted $R^2$ = 88%) and 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2$ [DMA conc] = $-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2+0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%) and 35.2 uM ($X_1$: 3 $mW/cm^2$, $X_2$: 220 uM, $X_3$: 6.3), $Y_3$ [DMF conc] = $-6.2+0.2X_1+0.02X_2+2X_3-0.26X_1^2-0.01X_2^2-0.2X_3^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, Adjusted $R^2$ = 94.4%) and 3.7 uM ($X_1:\;4.5\;$mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$) and $Y_4$ [$NO_2$-N conc] = $-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, Adjusted $R^2$ = 95.7%) and 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). This study has demonstrated that the response surface methodology and the Box-Behnken statistical experiment design can provide statistically reliable results for decomposition and by-products of NDMA by the UV photolysis and also for determination of optimum conditions. Predictions obtained from the response functions were in good agreement with the experimental results indicating the reliability of the methodology used.

Adaptive Row Major Order: a Performance Optimization Method of the Transform-space View Join (적응형 행 기준 순서: 변환공간 뷰 조인의 성능 최적화 방법)

  • Lee Min-Jae;Han Wook-Shin;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.345-361
    • /
    • 2005
  • A transform-space index indexes objects represented as points in the transform space An advantage of a transform-space index is that optimization of join algorithms using these indexes becomes relatively simple. However, the disadvantage is that these algorithms cannot be applied to original-space indexes such as the R-tree. As a way of overcoming this disadvantages, the authors earlier proposed the transform-space view join algorithm that joins two original- space indexes in the transform space through the notion of the transform-space view. A transform-space view is a virtual transform-space index that allows us to perform join in the transform space using original-space indexes. In a transform-space view join algorithm, the order of accessing disk pages -for which various space filling curves could be used -makes a significant impact on the performance of joins. In this paper, we Propose a new space filling curve called the adaptive row major order (ARM order). The ARM order adaptively controls the order of accessing pages and significantly reduces the one-pass buffer size (the minimum buffer size required for guaranteeing one disk access per page) and the number of disk accesses for a given buffer size. Through analysis and experiments, we verify the excellence of the ARM order when used with the transform-space view join. The transform-space view join with the ARM order always outperforms existing ones in terms of both measures used: the one-pass buffer size and the number of disk accesses for a given buffer size. Compared to other conventional space filling curves used with the transform-space view join, it reduces the one-pass buffer size by up to 21.3 times and the number of disk accesses by up to $74.6\%$. In addition, compared to existing spatial join algorithms that use R-trees in the original space, it reduces the one-pass buffer size by up to 15.7 times and the number of disk accesses by up to $65.3\%$.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF