• 제목/요약/키워드: optimization response

검색결과 2,307건 처리시간 0.026초

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구 (Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads)

  • 장환학;이현아;박경진
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Performance Optimization of Hypervelocity Launcher System using Experimental Data

  • Huh, Choul-Jun;Lee, Jin-Ho;Bae, Ki-Joon;Jeon, Kwon-Su;Byun, Yung-Hwan;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1829-1836
    • /
    • 2004
  • This study presents the performance optimization of hypervelocity launcher system by using the experimentall data. During the optimization, the RSM (Response Surface Method) is adopted to find the operating parameters that could maximize the projectile speed. To construct a reliable response surface model, 3 full factorial method is used with the selected design variables, such as piston mass and 2 driver fill pressure. Nine test data could successfully construct the reasonable response surface, which used to yield the optimal operational conditions of the system using the genetic algorithm. The optimization results are confirmed by the experimental test with a good accuracy. Thus, the optimization can improve the performance of the facility.

Optimizing Food Processing through a New Approach to Response Surface Methodology

  • Sungsue Rheem
    • 한국축산식품학회지
    • /
    • 제43권2호
    • /
    • pp.374-381
    • /
    • 2023
  • In a previous study, 'response surface methodology (RSM) using a fullest balanced model' was proposed to improve the optimization of food processing when a standard second-order model has a significant lack of fit. However, that methodology can be used when each factor of the experimental design has five levels. In response surface experiments for optimization, not only five-level designs, but also three-level designs are used. Therefore, the present study aimed to improve the optimization of food processing when the experimental factors have three levels through a new approach to RSM. This approach employs three-step modeling based on a second-order model, a balanced higher-order model, and a balanced highest-order model. The dataset from the experimental data in a three-level, two-factor central composite design in a previous research was used to illustrate three-step modeling and the subsequent optimization. The proposed approach to RSM predicted improved results of optimization, which are different from the predicted optimization results in the previous research.

반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계 (Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model)

  • 박찬경;이광기
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계 (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads)

  • 박기종;권용덕;송기남;박경진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치 (Optimization of Chassis Frame by Using D-Optimal Response Surface Model)

  • 이광기;구자겸;이태희
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

Recent Reseach in Simulation Optimization

  • 이영해
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1994년도 추계학술발표회 및 정기총회
    • /
    • pp.1-2
    • /
    • 1994
  • With the prevalence of computers in modern organizations, simulation is receiving more atention as an effectvie decision -making tool. Simualtion is a computer-based numerical technique which uses mathmatical and logical models to approximate the behaviror of a real-world system. However, iptimization of synamic stochastic systems often defy analytical and algorithmic soluions. Although a simulation approach is often free fo the liminting assumption s of mathematical modeling, cost and time consiceration s make simulation the henayst's last resort. Therefore, whenever possible, analytical and algorithmica solutions are favored over simulation. This paper discussed the issues and procedrues for using simulation as a tool for optimization of stochastic complex systems that are dmodeled by computer simulation . Its emphasis is mostly on issues that are speicific to simulation optimization instead of consentrating on the general optimizationand mathematical programming techniques . A simulation optimization problem is an optimization problem where the objective function. constraints, or both are response that can only be evauated by computer simulation. As such, these functions are only implicit functions of decision parameters of the system, and often stochastic in nature as well. Most of optimization techniqes can be classified as single or multiple-resoneses techniques . The optimization of single response functins has been researched extensively and consists of many techniques. In the single response category, these strategies are gradient based search techniques, stochastic approximate techniques, response surface techniques, and heuristic search techniques. In the multiple response categroy, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphica techniqes, direct search techniques, constrained optimization techniques, unconstrained optimization techniques, and goal programming techniques. The choice of theprocedreu to employ in simulation optimization depends on the analyst and the problem to be solved. For many practival and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computersimulation is one of the most effective means of studying such complex systems. In this paper, after discussion of simulation optmization techniques, the applications of above techniques will be presented in the modeling process of many flexible manufacturing systems.

  • PDF

Improving the Quality of Response Surface Analysis of an Experiment for Coffee-supplemented Milk Beverage: II. Heterogeneous Third-order Models and Multi-response Optimization

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.222-228
    • /
    • 2019
  • This research was motivated by our encounter with the situation where an optimization was done based on statistically non-significant models having poor fits. Such a situation took place in a research to optimize manufacturing conditions for improving storage stability of coffee-supplemented milk beverage by using response surface methodology, where two responses are $Y_1$=particle size and $Y_2$=zeta-potential, two factors are $F_1$=speed of primary homogenization (rpm) and $F_2$=concentration of emulsifier (%), and the optimization objective is to simultaneously minimize $Y_1$ and maximize $Y_2$. For response surface analysis, practically, the second-order polynomial model is almost solely used. But, there exists the cases in which the second-order model fails to provide a good fit, to which remedies are seldom known to researchers. Thus, as an alternative to a failed second-order model, we present the heterogeneous third-order model, which can be used when the experimental plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of factors. And, for multi-response optimization, we suggest a modified desirability function technique. Using these two methods, we have obtained statistical models with improved fits and multi-response optimization results with the predictions better than those in the previous research. Our predicted optimum combination of conditions is ($F_1$, $F_2$)=(5,000, 0.295), which is different from the previous combination. This research is expected to help improve the quality of response surface analysis in experimental sciences including food science of animal resources.