• Title/Summary/Keyword: optimization response

Search Result 2,307, Processing Time 0.028 seconds

Processing of Functional Porridge with Optimal Mixture Ratio of Mulberry Leaf Powder and Mulberry Fruit Powder (뽕잎분말과 오디분말의 최적 혼합비율을 이용한 기능성 죽 제조)

  • Kim, You-Jin;Kim, Min-Ju;Kim, Hyun-Bok;Lim, Jung-Dae;Kim, Ae-Jung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1081-1090
    • /
    • 2017
  • The purpose of this study was to develop a functional porridge prepared with mulberry leaf and mulberry fruit powder, which can ameliorate hypertension. The experiment was designed according to the central composite design. For optimization of the mixture ratio of mulberry leaf powder (MLP) and mulberry fruit powder (MFP), the independent variables were defined as MLP (X1) and MFP (X2) and the dependent variables were defined as K (Y1), Na (Y2), ${\gamma}$-aminobutyric acid (GABA) (Y3), cyanidin-3-glycoside (C3G) (Y4), rutin (Y5), and flavonoid (Y6). The optimal MLP to MFP mixture ratio according to the response surface method were 5.41 g of MLP and 2.65 g of MFP. The amounts of K, Na, GABA, C3G, rutin, and flavonoid in the optimal MLP and MFP mixture were 1,844.22 mg/100 g, 52.74 mg/100 g, 139.98 mg/100 g, 1,134.89 mg/100 g, 101.56 mg/100 g, and 201.28 mg/100 g, respectively. The amounts of Ca, K, Mg, and Na in the functional porridge at this optimal point were 27.66 mg/100 g, 131.32 mg/100 g, 19.57 mg/100 g, and 3.59 mg/100 g, respectively. Overall, this functional porridge can help reduce hypertension.

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

Optimization of Encapsulation Conditions for Fermented Red Ginseng Extracts by Using Cyclodextrin (Cyclodextrin을 이용한 발효홍삼농축액 최적 포접 조건)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1708-1714
    • /
    • 2015
  • Fermented red ginseng concentrate is known as a healthy food source, whereas it has off-flavor such as bitterness and sour flavor based on fermentation. ${\beta}$- and ${\gamma}$-cyclodextrin (CD) were used to encapsulate the off-flavor of fermented red ginseng concentrate by using response surface methodology design on ${\beta}$- and ${\gamma}-CD$ combination. The reducing effects were analyzed by sensory evaluation for bitter and sour tastes, ginsenoside Rb1, and total acidity. The optimized mixing ratio of ${\beta}$- and ${\gamma}-CD$ for reducing bitterness was the least expected value of 2.07 at ${\beta}-CD$ 3.74% versus the soluble solid content of fermented red ginseng concentrate and the ${\gamma}-CD$ 20.63% mixture. The encapsulation effects of ginsenoside Rb1 were the most expected value of 96.75% at ${\beta}-CD$ 3.47% and ${\gamma}-CD$ 19.89% mixture. The encapsulation effects of sour taste were the least expected value of 5.63 at ${\beta}-CD$ 9.34% and ${\gamma}-CD$ 9.96% mixture. The encapsulation effects of lactic acid were the most expected value of 67.73% at ${\beta}-CD$ 16.0% and ${\gamma}-CD$ 13.18% mixture. Based on encapsulation and each optimized combination, the most effective entrapping ${\beta}$-and ${\gamma}-CD$ combination ratio was ${\beta}-CD$ 10% and ${\gamma}-CD$ 13%.

Optimization of Processing Conditions for the Production of Puffed Rice (팽화미 제조 공정조건의 최적화)

  • Cheon, Hee Soon;Cho, Won Il;Jhin, Changho;Back, Kyeong Hwan;Ryu, Kyung Heon;Lim, Su Youn;Chung, Myong Soo;Choi, Jun Bong;Lim, Taehwan;Hwang, Keum Taek
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • The objective of this study was to optimize processing conditions for the production of an instant puffed rice product using response surface methodology (RSM) and contour analysis. Sensory and texture qualities, and physical properties of the puffed rice were analyzed with various processing conditions related to drying and puffing temperature, and moisture content. Preference, color intensity, cohesiveness, rehydration ratio, density and lightness of the puffed rice product significantly varied depending on the processing conditions. The responses showed high $R^2$ values (0.623, 0.852, 0.735, 0.688, and 0.790) and lack-of-fit. Rehydration ratio was found to have a negative correlation with density in the condition of drying and puffing temperature. Lightness and preference scores of the puffed rice increased as the moisture content increased. According to RSM, the preference scores were very highly related to the moisture content, and the optimum processing conditions of the puffed rice product were at $40^{\circ}C$ of drying temperature, with 11.0% of moisture content, and at $232.7^{\circ}C$ of puffing temperature.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Optimization of Cultivational Conditions of Rice(Oryza sativa L.) by a Central Composite Design Applied to an Early Cultivar in Southern Region (중심합성계획법에 의한 남부 조생벼 재배요인의 최적조건 구명)

  • Shon, Gil-Man;Kim, Jeung-Kyo;Choe, Zhin-Ryong;Lee, Yu-Sik;Park, Joong-Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.60-73
    • /
    • 1989
  • Two field experiments were carried out to assess the applicability of a central composite design (CCD) in determining optimum culture condition of an early rice cultivar, Unbongbyeo in southern Korea. A central composite design with two replicates was applied to five levels of five factors such as the number of hills per 3.3m2, the number of seedlings per hill, the levels of nitrogen, the transplanting date and the seedling age (Experiment 1). The levels of planting density were ranged from 30 hills to 150 hills per 3.3m2 ; the number of seedlings per hill from 1 seedling to 9 seedlings per hill; the levels of nitrogen application from 1 kg/l0a to 21 kg/l0a; the transplanting date from June 15 to July 5; the seedling age from 25 days to 45 days. A fractional factorial design was applied to three levels of five factors tested in CCD (Experiment 2). Yield per hill and per unit area were examined and the results obtained from both experiments were compared. The benefits from the central composite design were discussed. Maximum yield of brown rice per unit area was obtained at the combination of the central levels of one of five factors when the other four factors were fixed at central point. Furthermore, brown rice yield per unit area affected by interaction of two factors was maximized at the central point when the remain three factors being fixed at the central level. The responses of five factors to brown rice yield per hill and unit area were found to be a saddle point in both designs. Actual values of the stationary points were 107 hills per 3.3 m2, 4 seedlings per hill, 10 kg nitrogen per l0a, transplanting date of rice on June 26 and 33 days of seedling age in the central composite design. Brown rice yield per unit area at the stationary points were estimated 439 kg/l0a in the central composite design and 442 kg/l0a in the fractional factorial design. Considering the number of experimental treatment combinations, the central composite design was rather convenient in reducing the number of treatment combinations for similar information. It was more convenient for an experimenter to present the results from the central composite design than those from the fractional factorial design. Considering the optimum yields of brown rice per unit area at the stationary points being verified as saddle points in both designs. inter-heterogeneity of each of the factors should be avoided in setting up factors in pursuit of inducing unidirectional response of the factors to yield. Even though both the lower and higher levels in the central composite design being beyond the region of an experimenter's interest. they were considered highly valued in interpretation of the results. Conclusively. the central composite design was found to be more beneficial to optimize culture condition of paddy rice even with several levels of various factors were involved.

  • PDF