• 제목/요약/키워드: optimization problems

검색결과 2,418건 처리시간 0.028초

Thermal Unit Commitment Using Binary Differential Evolution

  • Jeong, Yun-Won;Lee, Woo-Nam;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.323-329
    • /
    • 2009
  • This paper presents a new approach for thermal unit commitment (UC) using a differential evolution (DE) algorithm. DE is an effective, robust, and simple global optimization algorithm which only has a few control parameters and has been successfully applied to a wide range of optimization problems. However, the standard DE cannot be applied to binary optimization problems such as UC problems since it is restricted to continuous-valued spaces. This paper proposes binary differential evolution (BDE), which enables the DE to operate in binary spaces and applies the proposed BDE to UC problems. Furthermore, this paper includes heuristic-based constraint treatment techniques to deal with the minimum up/down time and spinning reserve constraints in UC problems. Since excessive spinning reserves can incur high operation costs, the unit de-commitment strategy is also introduced to improve the solution quality. To demonstrate the performance of the proposed BDE, it is applied to largescale power systems of up to 100-units with a 24-hour demand horizon.

개선된 PSO 기법을 적용한 전력계통의 경제급전 (An Improved Particle Swarm Optimization Adopting Chaotic Sequences for Nonconvex Economic Dispatch Problems)

  • 정윤원;박종배;조기선;김형중;신중린
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1023-1030
    • /
    • 2007
  • This paper presents a new and efficient approach for solving the economic dispatch (ED) problems with nonconvex cost functions using particle swarm optimization (PSO). Although the PSO is easy to implement and has been empirically shown to perform well on many optimization problems, it may easily get trapped in a local optimum when solving problems with multiple local optima and heavily constrained. This paper proposes an improved PSO, which combines the conventional PSO with chaotic sequences (CPSO). The chaotic sequences combined with the linearly decreasing inertia weights in PSO are devised to improve the global searching capability and escaping from local minimum. To verify the feasibility of the proposed method, numerical studies have been performed for two different nonconvex ED test systems and its results are compared with those of previous works. The proposed CPSO algorithm outperforms other state-of-the-art algorithms in solving ED problems, which consider valve-point and multi-fuels with valve-point effects.

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

Optimum design of laterally-supported castellated beams using tug of war optimization algorithm

  • Kaveh, A.;Shokohi, F.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.533-553
    • /
    • 2016
  • In this paper, the recently developed meta-heuristic algorithm called tug of war optimization is applied to optimal design of castellated beams. Two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. Here, castellated beams have been studied for two cases: beams without filled holes and beams with end-filled holes. Also, tug of war optimization algorithm is utilized for obtaining the solution of these design problems. For this purpose, the minimum cost is taken as the objective function, and some benchmark problems are solved from literature.

Multi Case Non-Convex Economic Dispatch Problem Solving by Implementation of Multi-Operator Imperialist Competitive Algorithm

  • Eghbalpour, Hamid;Nabatirad, Mohammadreza
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1417-1426
    • /
    • 2017
  • Power system analysis, Non-Convex Economic Dispatch (NED) is considered as an open and demanding optimization problem. Despite the fact that realistic ED problems have non-convex cost functions with equality and inequality constraints, conventional search methods have not been able to effectively find the global answers. Considering the great potential of meta-heuristic optimization techniques, many researchers have started applying these techniques in order to solve NED problems. In this paper, a new and efficient approach is proposed based on imperialist competitive algorithm (ICA). The proposed algorithm which is named multi-operator ICA (MuICA) merges three operators with the original ICA in order to simultaneously avoid the premature convergence and achieve the global optimum answer. In this study, the proposed algorithm has been applied to different test systems and the results have been compared with other optimization methods, tending to study the performance of the MuICA. Simulation results are the confirmation of superior performance of MuICA in solving NED problems.

Metaheuristics for reliable server assignment problems

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1340-1346
    • /
    • 2014
  • Previous studies of reliable server assignment considered only to assign the same cost of server, that is, homogeneous servers. In this paper, we generally deal with reliable server assignment with different server costs, i.e., heterogeneous servers. We formulate this problem as a nonlinear integer programming mathematically. Our problem is defined as determining a deployment of heterogeneous servers to maximize a measure of service availability. We propose two metaheuristic algorithms (tabu search and particle swarm optimization) for solving the problem of reliable server assignment. From the computational results, we notice that our tabu search outstandingly outperforms particle swarm optimization for all test problems. In terms of solution quality and computing time, the proposed method is recommended as a promising metaheuristic for a kind of reliability optimization problems including reliable sever assignment and e-Navigation system.

효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발 (Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization)

  • 박형욱;김성찬;김민수;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

Symbiotic Organisms Search for Constrained Optimization Problems

  • Wang, Yanjiao;Tao, Huanhuan;Ma, Zhuang
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.210-223
    • /
    • 2020
  • Since constrained optimization algorithms are easy to fall into local optimum and their ability of searching are weak, an improved symbiotic organisms search algorithm with mixed strategy based on adaptive ε constrained (ε_SOSMS) is proposed in this paper. Firstly, an adaptive ε constrained method is presented to balance the relationship between the constrained violation degrees and fitness. Secondly, the evolutionary strategies of symbiotic organisms search algorithm are improved as follows. Selecting different best individuals according to the proportion of feasible individuals and infeasible individuals to make evolutionary strategy more suitable for solving constrained optimization problems, and the individual comparison criteria is replaced with population selection strategy, which can better enhance the diversity of population. Finally, numerical experiments on 13 benchmark functions show that not only is ε_SOSMS able to converge to the global optimal solution, but also it has better robustness.