• 제목/요약/키워드: optimization of fluoride condition

검색결과 3건 처리시간 0.02초

반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화 (Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM))

  • 황지연;;;김준영;최영균;신귀암
    • 적정기술학회지
    • /
    • 제5권2호
    • /
    • pp.82-90
    • /
    • 2019
  • 반응표면분석법(Response surface methodology, RSM)의 Box-Benhken Design (BBD) 모델을 사용하여, 350℃로 가열한 골탄의 수중 불소 흡착 조건을 최적화하였다. 최적화 변수로 수온, pH, 접촉시간, 초기불소농도를 선택하였고, Box-Behnken Design에 의한 29회의 매트릭스 실험값으로부터 2차 반응 표면식을 얻었다. 이 반응 모델식의 결정계수(R2)는 0.9249였고 모델의 p-value는 <0.0001로 나타나 실험 변수들이 흡착결과에 매우 유의미한 영향을 미친다는 것을 알 수 있었다. 반응 표면식에 의해 예측된 골탄의 불소 흡착 최적 조건은 수온 39.68℃, pH 6.25, 접촉시간 88.81 min, 초기불소농도 14.64 mgF/L이었으며 이때의 불소 흡착용량(adsorption capacity)은 6.46 mgF/g인 것으로 분석되었다.

Optimization of coagulation conditions for pretreatment of microfiltration process using response surface methodology

  • Jung, Jungwoo;Kim, Yoon-Jin;Park, Youn-Jong;Lee, Sangho;Kim, Dong-ha
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.223-229
    • /
    • 2015
  • The application of coagulation for feed water pretreatment prior to microfiltration (MF) process has been widely adopted to alleviate fouling due to particles and organic matters in feed water. However, the efficiency of coagulation pretreatment for MF is sensitive to its operation conditions such as pH and coagulant dose. Moreover, the optimum coagulation condition for MF process is different from that for rapid sand filtration in conventional drinking water treatment. In this study, the use of response surface methodology (RSM) was attempted to determine coagulation conditions optimized for pretreatment of MF. The center-united experimental design was used to quantify the effects of coagulant dose and pH on the control of fouling control as well as the removal organic matters. A MF membrane (SDI Samsung, Korea) made of polyvinylidene fluoride (PVDF) was used for the filtration experiments. Poly aluminum chloride (PAC) was used as the coagulant and a series of jar tests were conducted under various conditions. The flux was $90L/m^2-h$ and the fouling rate were calculated in each condition. As a result of this study, an empirical model was derived to explore the optimized conditions for coagulant dose and pH for minimization of the fouling rate. This model also allowed the prediction of the efficiency of the coagulation efficiency. The experimental results were in good agreement with the predictions, suggesting that RSM has potential as a practical method for modeling the coagulation pretreatment for MF.

불산 중 극미량 음이온 분석을 위한 고상 추출법 및 이온크로마토그래프를 이용한 동시분석법 확립 (Optimization of solid phase extraction and simultaneous determination of trace anions in concentrated hydrofluoric acid by ion chromatography)

  • 윤석환;조동호;김현지;신호상
    • 분석과학
    • /
    • 제29권5호
    • /
    • pp.219-224
    • /
    • 2016
  • A sensitive method to detect trace anions in hydrofluoric acid (HF) by solid-phase extraction (SPE) clean-up and ion chromatography (IC) was described. Fluoride in HF solution was eliminated with solid-phase extraction, and residual fluoride, acetate, chloride, bromide, nitrate, phosphate and sulfate were consecutively separated with IC. The SPE parameters (selection of adsorbent, sample volume and pH, elution solvent and its volume) were optimized and selected. The removal effect of fluoride in HF solution was the best on Oasis WAX column, and the optimum conditions (1.0 mL of 25 % HF solution and 50 mM ammonium acetate 5 mL as elution solvent) were established by the variation of parameters. Under the established condition, the method detection limits of chloride, bromide, nitrate, phosphate, and sulfate were 0.04~0.30 µg/L in 25 % HF solutions (w/w) and the relative standard deviation was less than 5 % at concentrations of 20.0 and 40.0 µg/L. The concentrations of anions in a 25 % HF had detectable levels of 4.2 to 47.5 µg/L. The method was sensitive, reproducible and simple enough to permit the reliable routine analysis of anions in HF solution used in the process of producing semiconductors.