• Title/Summary/Keyword: optimised maintenance strategy

Search Result 3, Processing Time 0.017 seconds

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Stochastic modelling and optimum inspection and maintenance strategy for fatigue affected steel bridge members

  • Huang, Tian-Li;Zhou, Hao;Chen, Hua-Peng;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.569-584
    • /
    • 2016
  • This paper presents a method for stochastic modelling of fatigue crack growth and optimising inspection and maintenance strategy for the structural members of steel bridges. The fatigue crack evolution is considered as a stochastic process with uncertainties, and the Gamma process is adopted to simulate the propagation of fatigue crack in steel bridge members. From the stochastic modelling for fatigue crack growth, the probability of failure caused by fatigue is predicted over the service life of steel bridge members. The remaining fatigue life of steel bridge members is determined by comparing the fatigue crack length with its predetermined threshold. Furthermore, the probability of detection is adopted to consider the uncertainties in detecting fatigue crack by using existing damage detection techniques. A multi-objective optimisation problem is proposed and solved by a genetic algorithm to determine the optimised inspection and maintenance strategy for the fatigue affected steel bridge members. The optimised strategy is achieved by minimizing the life-cycle cost, including the inspection, maintenance and failure costs, and maximizing the service life after necessary intervention. The number of intervention during the service life is also taken into account to investigate the relationship between the service life and the cost for maintenance. The results from numerical examples show that the proposed method can provide a useful approach for cost-effective inspection and maintenance strategy for fatigue affected steel bridges.

Stochastic modelling fatigue crack evolution and optimum maintenance strategy for composite blades of wind turbines

  • Chen, Hua-Peng;Zhang, Chi;Huang, Tian-Li
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.703-712
    • /
    • 2017
  • The composite blades of offshore wind turbines accumulate structural damage such as fatigue cracking due to harsh operation environments during their service time, leading to premature structural failures. This paper investigates various fatigue crack models for reproducing crack development in composite blades and proposes a stochastic approach to predict fatigue crack evolution and to analyse failure probability for the composite blades. Three typical fatigue models for the propagation of fatigue cracks, i.e., Miner model, Paris model and Reifsnider model, are discussed to reproduce the fatigue crack evolution in composite blades subjected to cyclical loadings. The lifetime probability of fatigue failure of the composite blades is estimated by stochastic deterioration modelling such as gamma process. Based on time-dependent reliability analysis and lifecycle cost analysis, an optimised maintenance policy is determined to make the optimal decision for the composite blades during the service time. A numerical example is employed to investigate the effectiveness of predicting fatigue crack growth, estimating the probability of fatigue failure and evaluating an optimal maintenance policy. The results from the numerical study show that the stochastic gamma process together with the proper fatigue models can provide a useful tool for remaining useful life predictions and optimum maintenance strategies of the composite blades of offshore wind turbines.