• Title/Summary/Keyword: optimality criteria method

Search Result 57, Processing Time 0.024 seconds

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1210-1216
    • /
    • 2003
  • Topology optimization is applied to determine the layout of a structural component with a specified frequency by minimizing the difference between the specified structural frequency and a given frequency. The homogenization design method is employed and the topology design problem is solved by the optimality criteria method. The value of a weighting factor in the optimality criteria plays an important role in this topology design problem. The modified optimality criteria method approximated by using the binomial expansion is suggested to determine the suitable value of the weighting factor, which makes convergence stable. If a given frequency is set as an excited frequency, it is possible to avoid resonance by moving away the specified structural frequency from the given frequency. The results of several test problems are compared with previous works and show the validity of the proposed algorithm.

Topology Optimization using an Optimality Criteria Method (최적조건법에 의한 위상 최적화 연구)

  • 김병수;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.224-232
    • /
    • 1999
  • Topology optimization has evolved into a very efficient concept design tool and has been incorporated into design engineering processes in many industrial sectors. In recent years, topology optimization has become the focus of structural design community and has been researched and applied widely both in academia and industry. There are mainly tow approaches for topology optimization of continuum structures ; homogenization and density methods. The homogenization method is to compute is to compute an optimal distribution of microstructures in a given design domain. The sizes of the micro-calvities are treated as design variables for the topology optimization problem. the density method is to compute an optimal distribution of an isotropic material, where the material densities are treated as design variables. In this paper, the density method is used to formulate the topology optimization problem. This optimization problem is solved by using an optimality criteria method. Several example problems are solved to show the usefulness of the present approach.

  • PDF

A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ) (원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ))

  • 전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

Optimum Design of Plane Frames Subject to Displacement and Stress Constraints (처짐과 응력제약(應力制約)을 받는 평면(平面) 뼈대의 최적설계(最適設計))

  • Chung, Young Shik;Lee, Jae Whane
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1987
  • This work presents an optimality criteria method which gives accurate solution to the structural optimization problem of plane frames subject to displacement and stress constraints. The method is made efficient, as well as rigorous, by including only the lateral displacement of the top floor in the set of behavioral constraints. The bending stresses of members are treated as side constraints based on the concept of fully-stressed-design, but the optimality of the final design is tested by treating them as behavioral constraints and examining if the design satisfies this new optimality criteria. Worked examples show the superiority of the rigorous opimality criteria in spite of its being simple and efficient.

  • PDF

Design of Step-Stress Accelerated Degradation Test based on the Wiener Process and D-Optimality Condition (Wiener Process 및 D-Optimality 조건 하에서 계단형 가속열화시험 설계)

  • Kim, Heongil;Park, Jaehun;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2017
  • Purpose: This article provides step-stress accelerated degradation test (ADT) plans based on the Wiener process. Method: Step-stress levels and the stress change times are determined based on the D-optimality criteria to develop test plans. Further, a simple grid search method is provided for obtaining the optimal test plan. Results: Based on the solution procedure, ADT plans which include the stress levels and change times are developed for conducting the reliability test. Conclusion: Optimal step-stress ADT plans are provided for the case where the number of measurements is small.

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Methods of Design Optimality Evaluation for Caisson Structural Systems (케이슨 구조계의 설계 최적성 평가)

  • Choi Min-Hee;Ryu Yeon-Sun;Cho Hyun-Man;Na Won-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.89-96
    • /
    • 2005
  • Numerical procedure of design optimality evaluation is studied for caisson structural systems. Two kinds of evaluation methods can be considered; mathematical optimality criteria method (MOCM) and numerical optimization method (NOM). The choice of the method depends on the available information of the system MOCM can be used only when the information of all function values, gradients and Lagrange multipliers is available, which may not be realistic in practice. Therefore, in this study, NOMs are applied for the structural optimality evaluation, where only design variables are necessary. To this end, Metropolis genetic algorithm (MGA) is advantageously used and applied for a standard optimization model of caisson composite breakwater. In the numerical example, cost and constraint functions are assumed to be changed from the orignal design situation and their effects are evaluated for optimality. From the theoretical consideration and numerical experience, it is found that the proposed optimality evaluation procedure with MGA-based NOM is efficient and practically applicable.

  • PDF

Preliminary Hull Form Generation by Form Parameter Method using GA (GA를 이용한 Form parameter 방법에 의한 초기선형 생성)

  • Kim, Su-Young;Shin, Sung-Chul;Shin, KYoung-Yup
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • In order to generate hull form, fairness criteria applies to object function, B-spline curve vertices are considered as design variables, optimization is proceeded with satisfying geometric constraint conditions. GA(Genetic Algorithm) and optimality criteria apply to optimization process in this study.

A Study on Form Parameter Method by Optimum Vertex Point Search (조정점 최적탐색에 의한 Form Parameter 방법에 관한 연구)

  • 김수영;신성철;김덕은
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.60-65
    • /
    • 2002
  • In order to generate hull form, we introduced optimization process. Fairness criteria is applied to object function, B-Spline control vertices are considered as design variables, optimization is proceeded with satisfying geometric constraint conditions. GA(Genetic Algorithm) and optimality criteria are applied to optimization process in this study.

Topology Optimization of Element Removal Method Using Stress Density (응력량을 이용한 요소제거법의 위상최적화)

  • 임오강;이진식;김창식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Topology optimization has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes. Traditional topology optimization has been using homogenization method and optimality criteria method. homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time. In one way to solve this problem, element removal method using the criterion of an average stress is presented. As the result of examples, it is certified that convergency time is very reduced.