• Title/Summary/Keyword: optimal thresholds

Search Result 90, Processing Time 0.024 seconds

Multi-level Thresholding using Fuzzy Clustering Algorithm in Local Entropy-based Transition Region (지역적 엔트로피 기반 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 Multi-Level Thresholding)

  • Oh, Jun-Taek;Kim, Bo-Ram;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.587-594
    • /
    • 2005
  • This paper proposes a multi-level thresholding method for image segmentation using fuzzy clustering algorithm in transition region. Most of threshold-based image segmentation methods determine thresholds based on the histogram distribution of a given image. Therefore, the methods have difficulty in determining thresholds for real-image, which has a complex and undistinguished distribution, and demand much computational time and memory size. To solve these problems, we determine thresholds for real-image using fuzzy clustering algorithm after extracting transition region consisting of essential and important components in image. Transition region is extracted based on Inか entropy, which is robust to noise and is well-known as a tool that describes image information. And fuzzy clustering algorithm can determine optimal thresholds for real-image and be easily extended to multi-level thresholding. The experimental results demonstrate the effectiveness of the proposed method for performance.

ModifiedFAST: A New Optimal Feature Subset Selection Algorithm

  • Nagpal, Arpita;Gaur, Deepti
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.113-122
    • /
    • 2015
  • Feature subset selection is as a pre-processing step in learning algorithms. In this paper, we propose an efficient algorithm, ModifiedFAST, for feature subset selection. This algorithm is suitable for text datasets, and uses the concept of information gain to remove irrelevant and redundant features. A new optimal value of the threshold for symmetric uncertainty, used to identify relevant features, is found. The thresholds used by previous feature selection algorithms such as FAST, Relief, and CFS were not optimal. It has been proven that the threshold value greatly affects the percentage of selected features and the classification accuracy. A new performance unified metric that combines accuracy and the number of features selected has been proposed and applied in the proposed algorithm. It was experimentally shown that the percentage of selected features obtained by the proposed algorithm was lower than that obtained using existing algorithms in most of the datasets. The effectiveness of our algorithm on the optimal threshold was statistically validated with other algorithms.

Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates

  • Bacinoglu, Baran Tan;Uysal-Biyikoglu, Elif
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.293-300
    • /
    • 2014
  • As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, harvest state and time until the end of the horizon. The policy, which is based on computing an expected threshold, performs close to optimal on a wide range of example energy harvest patterns. Moreover, it achieves higher throughput values for a given delay, than throughput-optimal online policies developed based on infinite-horizon formulations in recent literature. The solution is extended to include ergodic time-varying (fading) channels, and a corresponding low complexity policy is proposed and evaluated for this case as well.

A Loop Transformation for Parallelism from Single Loops

  • Jeong, Sam-Jin
    • International Journal of Contents
    • /
    • v.2 no.4
    • /
    • pp.8-11
    • /
    • 2006
  • This paper describes several loop partitioning techniques such as loop splitting method by thresholds and Polychronopoulos' loop splitting method for exploiting parallelism from single loop which already developed. We propose improved loop splitting method for maximizing parallelism of single loops with non-constant dependence distances. By using the distance for the source of the first dependence, and by our defined theorems, we present generalized and optimal algorithms for single loops with non-uniform dependences. The algorithms generalize how to transform general single loops into parallel loops.

  • PDF

Automatic Multithreshold Selection Method (자동적인 여러 임계값 결정 기법)

  • Lee, Han;Park, Rae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1371-1374
    • /
    • 1987
  • This paper presents a new automatic multithreshold selection method which is based on the threshold selection method proposed by Otsu. This method can overcome some of limitations of the Otsu's method. An optimal threshold is selected by the new criterion so as to maximize the separability in all subregions. To get multiple thresholds, the procedure may be recursively applied to the resultant classes which are determined by the proposed evaluation measure.

  • PDF

Parallelism for Single Loops with Multiple Dependences

  • Jeong, Sam-Jin
    • International Journal of Contents
    • /
    • v.3 no.3
    • /
    • pp.15-19
    • /
    • 2007
  • We review some loop partitioning techniques such as loop splitting method by thresholds and Polychronopoulos' loop splitting method for exploiting parallelism from single loop which already developed. We propose improved loop splitting method for maximizing parallelism of single loops with non-constant dependence distances. By using the iteration and distance for the source of the first dependence, and by our defined theorems, we present generalized and optimal algorithms for single loops with non-uniform dependences. The algorithms generalize how to transform general single loops with one dependence as well as with multiple dependences into parallel loops.

Binary Forecast of Heavy Snow Using Statistical Models

  • Sohn, Keon-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.369-378
    • /
    • 2006
  • This Study focuses on the binary forecast of occurrence of heavy snow in Honam area based on the MOS(model output statistic) method. For our study daily amount of snow cover at 17 stations during the cold season (November to March) in 2001 to 2005 and Corresponding 45 RDAPS outputs are used. Logistic regression model and neural networks are applied to predict the probability of occurrence of Heavy snow. Based on the distribution of estimated probabilities, optimal thresholds are determined via true shill score. According to the results of comparison the logistic regression model is recommended.

Optimal threshold using the correlation coefficient for the confusion matrix (혼동행렬의 상관계수를 이용한 최적분류점)

  • Hong, Chong Sun;Oh, Se Hyeon;Choi, Ye Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • The optimal threshold estimation is considered in order to discriminate the mixture distribution in the fields of Biostatistics and credit evaluation. There exists well-known various accuracy measures that examine the discriminant power. Recently, Matthews correlation coefficient and the F1 statistic were studied to estimate optimal thresholds. In this study, we explore whether these accuracy measures are appropriate for the optimal threshold to discriminate the mixture distribution. It is found that some accuracy measures that depend on the sample size are not appropriate when two sample sizes are much different. Moreover, an alternative method for finding the optimal threshold is proposed using the correlation coefficient that defines the ratio of the confusion matrix, and the usefulness and utility of this method are also discusses.

Fast Motion Estimation Algorithm Based on Thresholds with Controllable Computation (계산량 제어가 가능한 문턱치 기반 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2019
  • Tremendous computation of full search or lossless motion estimation algorithms for video coding has led development of many fast motion estimation algorithms. We still need proper control of computation and prediction quality. In the paper, we suggest an algorithm that reduces computation effectively and controls computational amount and prediction quality, while keeping prediction quality as almost the same as that of the full search. The proposed algorithm uses multiple thresholds for partial block sum and times of counting unchanged minimum position for each step. It also calculates the partial block matching error, removes impossible candidates early, implements fast motion estimation by comparing times of keeping the position of minimum error for each step, and controls prediction quality and computation easily by adjusting the thresholds. The proposed algorithm can be combined with conventional fast motion estimation algorithms as well as by itself, further reduce computation while keeping the prediction quality as almost same as the algorithms, and prove it in the experimental results.

Dynamic Adjustment of the Pruning Threshold in Deep Compression (Deep Compression의 프루닝 문턱값 동적 조정)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely utilized due to their outstanding performance in various computer vision fields. However, due to their computational-intensive and high memory requirements, it is difficult to deploy CNNs on hardware platforms that have limited resources, such as mobile devices and IoT devices. To address these limitations, a neural network compression research is underway to reduce the size of neural networks while maintaining their performance. This paper proposes a CNN compression technique that dynamically adjusts the thresholds of pruning, one of the neural network compression techniques. Unlike the conventional pruning that experimentally or heuristically sets the thresholds that determine the weights to be pruned, the proposed technique can dynamically find the optimal thresholds that prevent accuracy degradation and output the light-weight neural network in less time. To validate the performance of the proposed technique, the LeNet was trained using the MNIST dataset and the light-weight LeNet could be automatically obtained 1.3 to 3 times faster without loss of accuracy.