• 제목/요약/키워드: optimal systems

검색결과 6,746건 처리시간 0.033초

네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법 (Deep Learning Based Group Synchronization for Networked Immersive Interactions)

  • 이중재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.

나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용 (Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane)

  • 이진;윤병권;한경구;이승훈;김철현;김찬;이윤호;이동휘;이승혁;김경웅
    • 적정기술학회지
    • /
    • 제7권1호
    • /
    • pp.72-81
    • /
    • 2021
  • 안전한 음용수 확보를 위한 적정기술로써 환경적, 기술적 요구사항을 충족할 수 있는 나노섬유 멤브레인으로 구성된 무동력 막 여과 시스템을 평가하였다. 이 장치는 수두차에 의한 중력과 생물학적 막 오염층 제어로 별도의 에너지원이 필요 없고, 핵심 소재인 PVDF 나노섬유 멤브레인 필터가 병렬로 연결, 모듈화되어 있어 물 생산성을 높이는 구조이다. 이 장치의 실제 현장 적용 가능성을 평가하기 위해 Pilot-scale (3000-5000 L/day) 나노섬유 멤브레인 기반 정수 시스템이 개발도상국(키리바시, 투발루 등)에 2017년 8월 설치되어 3개월간 운영되었다. 14-92 L/(m2×h)의 플럭스로 안정적 물 생산성을 확인하였고 처리수의 탁도와 박테리아의 높은 제거율 (99.99% 이상)로 안전한 수질을 장기간 제공할 수 있음을 확인하였다. 이러한 결과는 현장 적용을 통해 나노섬유 멤브레인 기반 무동력 정수 시스템이 장기간 안전한 음용수를 공급할 수 있는 정수장치로 평가되었고, 적정기술로써 개도국의 수처리 장치로 활용 가능성을 보여준다.

한국형 워리어플랫폼 아키텍처 개발 연구 (Development of Korean Warrior Platform Architecture)

  • 김욱기;신규용;조성식;백승호;김용철
    • 융합정보논문지
    • /
    • 제11권5호
    • /
    • pp.111-117
    • /
    • 2021
  • 최근 국방부는 4차산업혁명을 비롯한 첨단과학 기술의 급속한 발전으로 미래 전장환경이 급속도로 변화하고 있는 현실에서 병역자원 감소와 복무기간 단축 등의 사회적 문제에 대해 능동적으로 대응하고, 인간 중심의 가치문화를 정립하기 위해 노력하고 있다. 이에 대한 일환으로 국방부는 국방개혁과 연계하여 육군의 역할을 재정립하고, 육군의 전투력을 극대화하기 위해 차세대 개인전투체계인 워리어플랫폼 도입을 추진하고 있다. 본 논문에서는 미래지상작전 양상 및 개념을 살펴보고, 해외 개인전투체계에 대한 사례분석을 통해 한국군에 적합한 최적의 워리어플랫폼 아키텍처를 제시한다. 이를 위해 개인 전투원에게 요구되는 필수 요구능력과 부대유형별 요구능력에 대해 분석하고, 워리어플랫폼 단계별 통합 및 연동방안을 구체적으로 제시하며, 통합 및 연동이 필요한 장비들간의 데이터 흐름 및 전원연결 구성도를 제시함으로써 효율적인 사업 추진 방향을 제안한다.

LSTM을 이용한 Piney River유역의 최대강우시 유량예측 (LSTM Prediction of Streamflow during Peak Rainfall of Piney River)

  • ;성연정;정영훈
    • 한국방재안전학회논문집
    • /
    • 제14권4호
    • /
    • pp.17-27
    • /
    • 2021
  • 유량예측은 효과적인 홍수관리 및 수자원 계획을 위한 매우 중요한 재난방지 접근법이다. 현재 기후변화로 인한 집중호우가 나날이 증가하고 있어 막대한 기반시설 손실과 재산, 인명 피해가 발생하고 있다. 본 연구는 미국 테네시주 Hickman County의 Vernon에 있는 Piney Resort의 최근 홍수사례분석을 통해 최대 강우 시나리오에서 유량예측에 대한 강우의 기여도를 측정했다. Piney River 유역내 USGS 두개의 관측소(03602500, 03599500)에서 20년(2000-2019) 동안의 일별 하천 유량, 수위 및 강우 데이터를 수집했고, Long Short Term Memory(LSTM)을 사용하였다. 또한, Tensorflow, Keras Machine learning frameworks, Python을 이용하여 14일로 구별된 유량 값을 예측하였다. 또한, 모델이 2021년 8월 21일의 범람 이벤트를 예측할 수 있었는지를 결정하는 데 사용되었다. 전체 데이터(수위, 유량 및 강우량)가 포함된 LSTM 모델은 일부 강우 모델을 제외하고 지속성 모델보다 우수한 성능을 보였으며, 강우자료만 이용하여 유량예측을 하는 것은 충분하지 않음을 나타냈다. 결과는 LSTM 모델은 0.68 및 13.84m3/s의 최적 NSE 및 RMSE 값을 나타냈고, 가장 낮은 예측 오차로 예측 최대유량은 94m3/s로 나타났다. 향후 강우 패턴에 대한 다양한 분석이 이루어진다면 효율적인 홍수 경보 시스템 및 정책을 설계하는 관련 연구에 도움을 줄 것으로 판단된다.

어텐션 모듈과 기하학적 데이터 증강을 통한 X-ray 영상 내 해부학적 랜드마크 검출 성능 향상 (Improved Anatomical Landmark Detection Using Attention Modules and Geometric Data Augmentation in X-ray Images)

  • 이효정;마세리;최장환
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제28권3호
    • /
    • pp.55-65
    • /
    • 2022
  • X-ray 두개골 영상에서 주요 해부학적 부위들 간의 거리를 계측하는 것은 진단과 치료 등 임상적 의미에서 매우 중요하다. 최근에는 딥러닝 기술의 발전을 바탕으로 랜드마크를 식별 및 검출하는 자동화 시스템들이 제시되고 있다. 이러한 딥러닝 기반 모델을 과적합 없이 학습 시키기 위해서는 대량의 영상과 라벨링 데이터가 필요하다. 기존에는 숙련된 판독의가 환자의 영상에서 랜드마크를 수동으로 식별하여 라벨링하는 방식으로 계측이 이루어져 왔다. 그러나 이러한 계측 방식은 많은 비용이 소요될 뿐만 아니라, 재현성이 떨어지기 때문에 자동화된 라벨링 방법에 대한 필요성이 제기되고 있다. 또한, X-ray 영상에는 광자가 통과하는 경로 상의 여러 인체조직들이 표시되기 때문에 랜드마크 식별이 일반 자연 이미지 또는 삼차원 모달리티 영상에 비해 어렵다. 본 연구에서는 X-ray 영상 내에 대량의 라벨링 데이터 생성을 가능하게 하는 기하학적 데이터 증강 기법을 제안하고 있다. 또한, 두개골 내 주요한 16개 랜드마크들의 검출 성능을 향상시키기 위해 다양한 어텐션 기법들의 구현 및 적용을 통해 랜드마크 검출을 위한 최적의 어텐션 메커니즘을 제시하였다. 마지막으로 주요 두개골 랜드마크들 중 안정적인 검출이 보장되는 마커들을 도출하였으며, 이러한 마커들은 임상적인 활용 가능성이 높을 것으로 기대된다.

Use of Multimedia Technologies in Extra-Curricular Works in Order to Improve the Quality of Training of Future Specialists

  • Tverezovska, Nina;Kovbasa, Tetiana;Pryhalinska, Tetiana;Mykhniuk, Serhii;Lopushan, Tetiana;Radionova, Olena;Kuchai, Tetiana
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.35-42
    • /
    • 2022
  • The article deals with the role of extra-curricular work by means of multimedia technologies in order to improve the quality of training of future specialists. An important condition for achieving high results in training specialists is the optimal combination of classroom and independent extra-curricular work of students by means of multimedia technologies. Very significant is the development of student independence, the formation of skills of independent search activity, the ability to take responsibility, independently solve a problem, find constructive solutions, a way out of a crisis situation, and so on. Extra-curricular work forms students' ability to master the techniques of analysis, synthesis, generalization, comparison; develops flexibility of thinking; opens up opportunities for the development and stabilization of positive learning motives to activate the process of mastering knowledge by means of multimedia technologies as a means of forming the personality of a highly qualified specialist. The concept of multimedia as one of the priority areas of Information Technology, which plays a particularly important role in the process of informatization of education, is revealed, and its advantages in education are shown. The advent of multimedia systems optimizes transformations in education, in many areas of professional activity, science, art, etc. The necessity of distance learning to improve the quality of training of future specialists using multimedia technologies in extra-curricular work is justified. The effectiveness of pedagogical support in the process of distance learning is achieved by the following conditions, which is revealed in the article. Various forms and types of extra-curricular work of students that are used in the modern practice of the educational environment of a higher education institution are described. Scientific and informational activity is considered a key area of information activity. The analysis of scientific and information activities in the field of education allows us to identify its main functions, which emphasize the growing role of scientific information in the education system, in particular, extra-curricular work using multimedia technologies. Operational, complete, accurate, targeted information that meets objective and subjective needs becomes an important link between the field of management, science and practice.

한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구 (A Study of Pre-trained Language Models for Korean Language Generation)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.309-328
    • /
    • 2022
  • 본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.

땅꽈리(Physalis angulata L.) 하배축 절편으로부터 신초 형성을 통한 식물체 재분화 (Plant Regeneration via Adventitious Shoot Formation from Hypocotyl Explants of Groundcherry (Physalis angulata L.))

  • 고석찬
    • 한국자원식물학회지
    • /
    • 제35권4호
    • /
    • pp.502-507
    • /
    • 2022
  • 본 연구는 약용식물자원인 땅꽈리 유식물의 하배축 절편으로부터 부정아 형성을 통한 재분화를 조사하여 효율적인 재분화 조건을 확립하고자 하였다. 신초는 저농도 BAP를 함유하는 MS 배지에서 효과적으로 유도되었다. 신초 유도는 BAP 0.5~1.0 mg/L를 단독으로 또는 NAA 0.1~0.5 mg/L와 함께 처리한 MS 배지에서 활발히 이루어졌으며, 특히 BAP 1.0 mg/L가 포함된 MS 배지가 가장 효과적이어서 다발성 신초가 왕성하게 형성되었다. 유도된 신초를 뿌리 유도 배지로 옮겼을 때, 저농도의 NAA, IBA, IAA에서 뿌리가 잘형성되어 재분화 식물체를 만들어 내기에 적절하였다. 발근 수와 뿌리의 길이는 각각평균 2.0개, 8.0 cm 이상으로 높게 나타났다. 특히, 0.03 mg/L의 NAA, IBA, IAA를 포함한 MS 배지에서 뿌리가 더잘 성장하고, 뿌리의 전체적인 형태도 양호하였다. 그리고, 저농도의 NAA, IBA, IAA를 함유하는 MS 배지에서 새로운 신초의 형성도 잘 이루어져서, 줄기의 수가 2개 이상으로 많이, 그리고 길이는 6.0 cm 이상으로 길게 신장하였다. 배양토에 이식한 재분화 식물체는 100%의 생존율을 보였으며, 모두 정상적인 성체로 생장하였다. 따라서 땅꽈리의 부정아 형성을 이용한 재분화 식물체의 생산은 개체들을 대량 증식할 수 있어 균질한 조원료를 안정적으로 공급하는데 주요 수단이 될 것으로 보인다.

음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지 (Deep Learning Acoustic Non-line-of-Sight Object Detection)

  • 신의현;김광수
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.233-247
    • /
    • 2023
  • 최근 관찰자의 직접적인 시야 밖의 숨겨진 공간의 물체를 탐지하는 비가시 영역 객체 탐지 연구가 주목받고 있다. 대부분의 연구들은 빛의 직진성을 활용한 광학장비를 사용하지만, 회절성과 직진성을 모두 갖춘 소리 또한 비가시 영역연구에 적합하다. 본 논문에서는 가청 주파수 범위의 음향 신호를 활용하여 비가시 영역의 객체를 탐지하는 새로운 방법을 제안한다. 음향 신호만을 입력하여 비가시 영역에서 정보를 추출하고 숨겨진 물체의 종류와 범위를 예측하는 딥러닝 모델을 설계한다. 또한 딥러닝 모델의 훈련 및 평가를 위해 총 11개 물체에 대한 신호의 송 수신 위치를 변경하여 데이터를 수집한다. 이를 통해, 입력 데이터 변화에 따른 물체의 분류 정확도 및 탐지 성능을 비교한다. 우리는 딥러닝 모델이 음향신호를 활용히여 비가시 영역 객체 탐지하는데 우수한 성능을 보임을 증명한다. 신호 수집 위치와 반사벽 사이 거리가 멀어질수록 성능이 저하되고, 여러 위치에서 수집된 신호의 결합을 통해 성능이 향상되는 것을 관찰한다. 마지막으로, 음향 신호를 활용하여 비가시 영역 객체 탐지를 위한 최적의 조건을 제시한다.

순환 아키텍쳐 및 하이퍼파라미터 최적화를 이용한 데이터 기반 군사 동작 판별 알고리즘 (A Data-driven Classifier for Motion Detection of Soldiers on the Battlefield using Recurrent Architectures and Hyperparameter Optimization)

  • 김준호;채건주;박재민;박경원
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.107-119
    • /
    • 2023
  • 군인의 동작 및 운동 상태를 인식하는 기술은 웨어러블 테크놀로지와 인공지능의 결합으로 최근 대두되어 병력 관리의 패러다임을 바꿀 기술로 주목받고 있다. 이때 훈련 상황에서의 평가 및 솔루션 제공, 전투 상황에서의 효율적 모니터링 기능을 의도한대로 제공하기 위해서는 상태 판별의 정확도가 매우 높은 수준으로 유지되어야만 한다. 하지만 입력 데이터가 시계열 또는 시퀀스로 주어지는 경우, 기존의 피드포워드 신경망으로는 분류 성능을 극대화하는데 한계가 발생한다. 전장에서의 군사 동작 인식을 위해 다뤄지는 인간의 행동양식 데이터(3축 가속도 및 3축 각속도)는 시의존적 특성의 분석이 요구되기 때문에, 본 논문은 순환 신경망인 LSTM(Long-short Term Memory) 네트워크를 활용하여 취득 데이터의 이동 양상 및 순서 의존성을 파악하고 여덟 가지의 대표적 군사 동작(Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, High Crawl)을 분류하는 고성능 인공지능 모델을 제안한다. 이때, 학습 조건 및 모델 변수는 그 정확도에 결정적인 영향을 끼치지만 인간의 수동적 조정이 필요해 비용 비효율적이고 최적의 값을 보장하지 못한다. 본 논문은 기계 스스로 일반화 성능이 극대화된 조건들을 취득할 수 있도록 베이지안 최적화를 활용해 하이퍼파라미터를 최적화한다. 그 결과, 최종 아키텍쳐는 학습 가능한 파라미터의 개수가 유사한 기존의 인공 신경망과 비교해서 오차율이 62.56% 감소할 수 있었으며, 최종적으로 98.39%의 정확도로 군사 동작 인식 기능을 구현할 수 있었다.