• Title/Summary/Keyword: optimal solutions

Search Result 1,384, Processing Time 0.025 seconds

Establishment of Optimal Conditions for the Hypoosmotic Swelling Test to Evaluate the Integrity of Spermatozoal Plasma Membrane in Dog

  • Jang Hyun-Yong;Jung Yoo-Sung;Kim Jong-Taek;Park Chun-Keun;Cheong Hee-Tae;Kim Choung-Ik;Yang Hoo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • Hypoosmotic swelling test (HOST) is used for evaluating the plasma membrane function and fertilizing ability in mammal spermatozoa. However, HOS solutions and experimental conditions have not been determined clearly for assessing canine spermatozoa. This study was conducted to examine the HOS solutions and assay conditions, including incubation time (30 to 120 min), storage temperature (4, 17 and $20^{\circ}C$), semen status (fresh and frozen). Maximum spermatozoal plasma membrane swelling was obtained in an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min. The storage temperature and semen status affected the percentage of HOS positive spermatozoa. The HOS test adapted to canine spermatozoa in this study was simple and highly consistent assay with good repeatability. The optimal condition of HOST in canine spermatozoa is an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min regardless of semen storage temperature and semen status.

THE EFFECTS OF TAXATION ON OPTIMAL CONSUMPTION AND INVESTMENT

  • Lim, Byung Hwa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.65-73
    • /
    • 2018
  • We investigate the optimal consumption and investment problem of working agent who faces tax system on consumption, labor income, savings and investment. By applying martingale method, we obtain the closed-form solutions so it is possible to verify the effect of tax system analytically.

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Optimal Spare Part Level in Multi Indenture and Multi Echelon Inventory Applying Marginal Analysis and Genetic Algorithm (한계분석법과 유전알고리즘을 결합한 다단계 다계층 재고모형의 적정재고수준 결정)

  • Jung, Sungtae;Lee, Sangjin
    • Korean Management Science Review
    • /
    • v.31 no.3
    • /
    • pp.61-76
    • /
    • 2014
  • There are three methods for calculating the optimal level for spare part inventories in a MIME (Multi Indenture and Multi Echelon) system : marginal analysis, Lagrangian relaxation method, and genetic algorithm. However, their solutions are sub-optimal solutions because the MIME system is neither convex nor separable by items. To be more specific, SRUs (Shop Replaceable Units) are required to fix a defected LRU (Line Replaceable Unit) because one LRU consists of several SRUs. Therefore, the level of both SRU and LRU cannot be calculated independently. Based on the limitations of three existing methods, we proposes a improved algorithm applying marginal analysis on determining LRU stock level and genetic algorithm on determining SRU stock level. It can draw optimal combinations on LRUs through separating SRUs. More, genetic algorithm enables to extend the solution search space of a SRU which is restricted in marginal analysis applying greedy algorithm. In the numerical analysis, we compare the performance of three existing methods and the proposed algorithm. The research model guarantees better results than the existing analytical methods. More, the performance variation of the proposed method is relatively low, which means one execution is enough to get the better result.

Sensor placement optimization in structural health monitoring using distributed monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Proper placement of sensors plays a key role in construction and implementation of an effective structural health monitoring (SHM) system. This paper proposes a novel methodology called the distributed monkey algorithm (DMA) for the optimum design of SHM system sensor arrays. Different from the existing algorithms, the dual-structure coding method is adopted for the representation of design variables and the single large population is partitioned into subsets and each subpopulation searches the space in different directions separately, leading to quicker convergence and higher searching capability. After the personal areas of all subpopulations have been finished, the initial optimal solutions in every subpopulation are extracted and reordered into a new subpopulation, and the harmony search algorithm (HSA) is incorporated to find the final optimal solution. A computational case of a high-rise building has been implemented to demonstrate the effectiveness of the proposed method. Investigations have clearly suggested that the proposed DMA is simple in concept, few in parameters, easy in implementation, and could generate sensor configurations superior to other conventional algorithms both in terms of generating optimal solutions as well as faster convergence.

EXISTENCE AND DECAY PROPERTIES OF WEAK SOLUTIONS TO THE INHOMOGENEOUS HALL-MAGNETOHYDRODYNAMIC EQUATIONS

  • HAN, PIGONG;LEI, KEKE;LIU, CHENGGANG;WANG, XUEWEN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.76-107
    • /
    • 2022
  • In this paper, we study the temporal decay of global weak solutions to the inhomogeneous Hall-magnetohydrodynamic (Hall-MHD) equations. First, an approximation problem and its weak solutions are obtained via the Caffarelli-Kohn-Nirenberg retarded mollification technique. Then, we prove that the approximate solutions satisfy uniform decay estimates. Finally, using the weak convergence method, we construct weak solutions with optimal decay rates to the inhomogeneous Hall-MHD equations.

Optimal Configuration of Distribution Network using Genetic Algorithms

  • Kim, Intaek;Wonhyuk Cho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.625-628
    • /
    • 1998
  • This paper presents an application of genetic algorithms(GAs) for optimal configuration of distribution network. Three problems have been used to show how genetic algorithms are modified and applied. Solutions to the problems are found by minimizing the cost function which is directly related with balancing the loads. Simulation results show that genetic algorithms are technically feasible if they are tailored to meet the needs of real problems.

  • PDF