• Title/Summary/Keyword: optimal route search algorithm

Search Result 58, Processing Time 0.022 seconds

A Study on the Heuristic Search Algorithm on Graph (그라프에서의 휴리스틱 탐색에 관한 연구)

  • Kim, Myoung-Jae;Chung, Tae-Choong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2477-2484
    • /
    • 1997
  • Best-first heuristic search algorithm, such as $A^{\ast}$ algorithm, are one of the most important techniques used to solve many problems in artificial intelligence. A common feature of heuristic search is its high computational complexity, which prevents the search from being applied to problems is practical domains such as route-finding in road map with significantly many nodes. In this paper, several heuristic search algorithms are concerned. A new dynamic weighting heuristic method called the pat-sensitive heuristic is proposed. It is based on a dynamic weighting heuristic, which is used to improve search effort in practical domain such as admissible heuristic is not available or heuristic accuracy is poor. It's distinctive feature compared with other dynamic weighting heuristic algorithms is path-sensitive, which means that ${\omega}$(weight) is adjusted dynamically during search process in state-space search domain. For finding an optimal path, randomly scattered road-map is used as an application area.

  • PDF

A Link-Label Based Node-to-Link Optimal Path Algorithm Considering Non Additive Path Cost (비가산성 경로비용을 반영한 링크표지기반 Node-to-Link 최적경로탐색)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2019
  • Existing node-to-node based optimal path searching is built on the assumption that all destination nodes can be arrived at from an origin node. However, the recent appearance of the adaptive path search algorithm has meant that the optimal path solution cannot be derived in node-to-node path search. In order to reflect transportation data at the links in real-time, the necessity of the node-to-link (or link-to-node; NL) problem is being recognized. This research assumes existence of a network with link-label and non-additive path costs as a solution to the node-to-link optimal path problem. At the intersections in which the link-label has a turn penalty, the network retains its shape. Non-additive path cost requires that M-similar paths be enumerated so that the ideal path can be ascertained. In this, the research proposes direction deletion and turn restriction so that regulation of the loop in the link-label entry-link-based network transformation method will ensure that an optimal solution is derived up until the final link. Using this method on a case study shows that the proposed method derives the optimal solution through learning. The research concludes by bringing to light the necessity of verification in large-scale networks.

A Hybrid Search Method of A* and Dijkstra Algorithms to Find Minimal Path Lengths for Navigation Route Planning (내비게이션 경로설정에서 최단거리경로 탐색을 위한 A*와 Dijkstra 알고리즘의 하이브리드 검색법)

  • Lee, Yong-Hu;Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.109-117
    • /
    • 2014
  • In navigation route planning systems using A* algorithms, the cardinality of an Open list, which is a list of candidate nodes through which a terminal node can be accessed, increases as the path length increases. In this paper, a method of alternately utilizing the Dijkstra's algorithm and the A* algorithm to reduce the cardinality of the Open list is investigated. In particular, by employing a depth parameter, named Level, the two algorithms are alternately performed depending on the Level's value. Using the hybrid searching approach, the Open list constructed in the Dijkstra's algorithm is transferred into the Open list of the A* algorithm, and consequently, the unconstricted increase of the cardinality of the Open list of the former algorithm can be avoided and controlled appropriately. In addition, an optimal or nearly optimal path similar to the Dijkstra's route, but not available in the A* algorithm, can be found. The experimental results, obtained with synthetic and real-life benchmark data, demonstrate that the computational cost, measured with the number of nodes to be compared, was remarkably reduced compared to the traditional searching algorithms, while maintaining the similar distance to those of the latter algorithms. Here, the values of Level were empirically selected. Thus, a study on finding the optimal Level values, while taking into consideration the actual road conditions remains open.

A Genetic Algorithm for Minimizing Delay in Dynamic Overlay Networks

  • Lee, Chae-Y.;Seo, Sang-Kun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.459-463
    • /
    • 2007
  • Overlay multicast is an emerging technology for next generation Internet service to various groups of multicast members. It will take the place of traditional IP multicast which is not widely deployed due to the complex nature of its technology. The overlay multicast which effectively reduces processing at IP routers can be easily deployed on top of a densely connected IP network. An end-to-end delay problem is considered which is serious in the multicast service. To periodically optimize the route in the overlay network and to minimize the maximum end-to-end delay, overlay multicast tree is investigated with genetic Algorithm. Outstanding experimental results are obtained which is comparable to the optimal solution and the tabu search.

  • PDF

The Bisection Seed Detection Heuristic for Solving the Capacitated Vehicle Routing Problem (한정 용량 차량 경로 탐색 문제에서 이분 시드 검출 법에 의한 발견적 해법)

  • Ko, Jun-Taek;Yu, Young-Hoon;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The Capacitated Vehicle Routing Problem (CVRP) is the problem that the vehicles stationed at central depot are to be optimally routed to supply customers with demands, satisfying vehicle capacity constraints. The CVRP is the NP-hard as it is a natural generalization of the Traveling Salesman Problem (TSP). In this article, we propose the heuristic algorithm, called the bisection seed detection method, to solve the CVRP. The algorithm is composed of 3-phases. In the first phase, we work out the initial cluster using the improved sweep algorithm. In the next phase, we choose a seed node in each initial cluster by using the bisection seed detection method, and we compose the rout with the nearest node from each seed. At this phase, we compute the regret value to decide the list of priorities for the node assignment. In the final phase, we improve the route result by using the tabu search and exchange algorithm. We compared our heuristic with different heuristics such as the Clark-Wright heuristic and the genetic algorithm. The result of proposed heuristic show that our algorithm can get the nearest optimal value within the shortest execution time comparatively.

  • PDF

Forecasting of Traffic Situation using Internet (인터넷을 이용한 교통상황예보)

  • Hong, You-Sik;Choi, Myeong-Bok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.300-309
    • /
    • 2003
  • The Japanese developed the first Car navigation system in 1981 with the advent of Honda, which was known as the car inertial navigation system. Now days, It is possible to search the shortest route to and from places and arrival time using the internet via cell phone to the driver based on GIS and GPS. However, even with a good navigation system, it losses the shortest route when there is an average speed of the vehicle being between S-15 kilometers. Therefore, in order to improve the vehicle waiting time and average vehicle speed, we are suggesting an optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection lengths, and lanes. In this paper, to be able to assist the driver and forecast the optimal traffic information with regards to the road conditions; dangerous roads, construction work and estimation of arrival time at their destination using internet.

Analysis of Infiltration Route using Optimal Path Finding Methods and Geospatial Information (지형공간정보 및 최적탐색기법을 이용한 최적침투경로 분석)

  • Bang, Soo Nam;Heo, Joon;Sohn, Hong Gyoo;Lee, Yong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.195-202
    • /
    • 2006
  • The infiltration route analysis is a military application using geospatial information technology. The result of the analysis would present vulnerable routes for potential enemy infiltration. In order to find the susceptible routes, optimal path search algorithms (Dijkstra's and $A^*$) were used to minimize the cost function, summation of detection probability. The cost function was produced by capability of TOD (Thermal Observation Device), results of viewshed analysis using DEM (Digital Elevation Model) and two related geospatial information coverages (obstacle and vegetation) extracted from VITD (Vector product Interim Terrain Data). With respect to 50m by 50m cells, the individual cost was computed and recorded, and then the optimal infiltration routes was found while minimizing summation of the costs on the routes. The proposed algorithm was experimented in Daejeon region in South Korea. The test results show that Dijkstra's and $A^*$ algorithms do not present significant differences, but A* algorithm shows a better efficiency. This application can be used for both infiltration and surveillance. Using simulation of moving TOD, the most vulnerable routes can be detected for infiltration purpose. On the other hands, it can be inversely used for selection of the best locations of TOD. This is an example of powerful geospatial solution for military application.

A Polynomial Time Algorithm of a Traveling Salesman Problem (외판원 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.75-82
    • /
    • 2013
  • This paper proposes a $O(n^2)$ polynomial time algorithm to obtain optimal solution for Traveling Salesman problem that is a NP-complete because polynomial time algorithm has been not known yet. The biggest problem in a large-scale Traveling Salesman problem is the fact that the amount of data to be processed is $n{\times}n$, and thus as n increases, the data increases by multifold. Therefore, this paper proposes a methodology by which the data amount is first reduced to approximately n/2. Then, it seeks a bi-directional route at a random point. The proposed algorithm has proved to be successful in obtaining the optimal solutions with $O(n^2)$ time complexity when applied to TSP-1 with 26 European cities and TSP-2 with 46 cities of the USA. It could therefore be applied as a generalized algorithm for TSP.

Enhancing the Quality of Service by GBSO Splay Tree Routing Framework in Wireless Sensor Network

  • Majidha Fathima K. M.;M. Suganthi;N. Santhiyakumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2188-2208
    • /
    • 2023
  • Quality of Service (QoS) is a critical feature of Wireless Sensor Networks (WSNs) with routing algorithms. Data packets are moved between cluster heads with QoS using a number of energy-efficient routing techniques. However, sustaining high scalability while increasing the life of a WSN's networks scenario remains a challenging task. Thus, this research aims to develop an energy-balancing component that ensures equal energy consumption for all network sensors while offering flexible routing without congestion, even at peak hours. This research work proposes a Gravitational Blackhole Search Optimised splay tree routing framework. Based on the splay tree topology, the routing procedure is carried out by the suggested method using three distinct steps. Initially, the proposed GBSO decides the optimal route at initiation phases by choosing the root node with optimum energy in the splay tree. In the selection stage, the steps for energy update and trust update are completed by evaluating a novel reliance function utilising the Parent Reliance (PR) and Grand Parent Reliance (GPR). Finally, in the routing phase, using the fitness measure and the minimal distance, the GBSO algorithm determines the best route for data broadcast. The model results demonstrated the efficacy of the suggested technique with 99.52% packet delivery ratio, a minimum delay of 0.19 s, and a network lifetime of 1750 rounds with 200 nodes. Also, the comparative analysis ensured that the suggested algorithm surpasses the effectiveness of the existing algorithm in all aspects and guaranteed end-to-end delivery of packets.

Driver Route Choice Models for Developing Real-Time VMS Operation Strategies (VMS 실시간 운영전략 구축을 위한 운전자 경로선택모형)

  • Kim, SukHee;Choi, Keechoo;Yu, JeongWhon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.409-416
    • /
    • 2006
  • Real-time traveler information disseminated through Variable Message Signs (VMS) is known to have effects on driver route choice decisions. In the past, many studies have attempted to optimize the system performance using VMS message content as the primary control variable of driver route choice. This research proposes a VMS information provision optimization model which searches the best combination of VMS message contents and display sequence to minimize the total travel time on a highway network considered. The driver route choice models under VMS information provision are developed using a stated preference (SP) survey data in order to realistically capture driver response behavior. The genetic algorithm (GA) is used to find the optimal VMS information provision strategies which consists of the VMS message contents and the sequence of message display. In the process of the GA module, the system performance is measured using micro traffic simulation. The experiment results highlight the capability of the proposed model to search the optimal solution in an efficient way. The results show that the traveler information conveyed via VMS can reduce the total travel time on a highway network. They also suggest that as the frequency of VMS message update gets shorter, a smaller number of VMS message contents performs better to reduce the total travel time, all other things being equal.