• Title/Summary/Keyword: optimal redundant actuation

Search Result 5, Processing Time 0.021 seconds

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Performance Analysis and Optimal Actuator Sizing for Anthropomorphic Robot Modules with Redundant Actuation (여유구동 인체형 로봇 모듈의 성능해석 및 구동장치 최적설계)

  • 이상헌;이병주;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.181-192
    • /
    • 1995
  • In this study, we introduce new types of planar 2 degree-of-freedom robot modules resembling the musculoskeletal structure of the human arm with actuation redundancy. First, for the given actuator sizes the performance analysis for the manipulator with redundant actuation and without redundant actuation is performed with respect to maximum load handling capacity, maximum hand velocity, and maximum hand acceleration. Secondly an algorithm which decides optimal actuator sizes for the given operational performances is introduced, and the optimal actuator sizes for a robot module with four redundant actuation are obtained. The algorithms employed in this paper will be useful to analyze the robot performances and to determine the actuator sizes for general robot manipulators.

Development of a five-bar finger with redundant actuation (여유구동을 이용한 5관절 휴먼핑거의 개발)

  • 이재훈;이병주;오상록;김병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1613-1616
    • /
    • 1997
  • In order to develop a human hand mechanism, a 5-bar finger with redundant actuation is designed and implemented. an optimal set of acutator locations and link lengths for the case of one redundant actuator is obtained by employing a composite design index which simulataneously consider several performance indices such as workspace, isotropic index, and force transmission ratio. Each joing is driven by an compact actuator mechanism having ultrasonic motor and a gear set with poeneiometer an controlled by VME Bus-based control system.

  • PDF

Complete Identification of Isotropic Configurations of a Caster Wheeled Mobile Robot with Nonredundant/Redundant Actuation

  • Kim Sung-Bok;Moon Byung-Kwon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • In this paper, we present the complete isotropy analysis of a caster wheeled omnidirectional mobile robot (COMR) with nonredundant/redundant actuation. It is desirable for robust motion control to keep a COMR close to the isotropy but away from the singularity as much as possible. First, with the characteristic length introduced, the kinematic model of a COMR is obtained based on the orthogonal decomposition of the wheel velocities. Second, a general form of the isotropy conditions of a COMR is given in terms of physically meaningful vector quantities which specify the wheel configuration. Third, for all possible nonredundant and redundant actuation sets, the algebraic expressions of the isotropy conditions are derived so as to identify the isotropic configurations of a COMR. Fourth, the number of the isotropic configurations, the isotropic characteristic length, and the optimal initial configuration are discussed.

Analysis on Kinematic Characteristics of the Revolute-joint-based Translational 3-DOF Parallel Mechanisms (회전관절만을 활용하는 병진 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Park, Jae-Hyun;Kim, Sung Mok;Kim, WheeKuk
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.119-132
    • /
    • 2015
  • Two novel parallel mechanisms (PMs) employing two or three PaPaRR subchains are suggested. Each of those two PMs has translational 3-DOF motion and employs only revolute joints such that they could be adequate for haptic devices requiring minimal frictions. The position analyses of those two PMs are conducted. The mobility analysis, the kinematic modeling, and singularity analysis of each of two PMs are performed employing the screw theory. Then through optimal kinematic design, each of two PMs has excellent kinematic characteristics as well as useful workspace size adequate for haptic applications. In particular, by applying an additional redundantly actuated joint to the 2-PaPaRR type PM which has a closed-form position solution, it is shown that all of its parallel singularities within reachable workspace are completely removed and that its kinematic characteristics are improved.