• Title/Summary/Keyword: optimal preparing conditions

Search Result 44, Processing Time 0.026 seconds

Utilization of Kraft Black Liquor as Resin Binders (접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用))

  • Park, Kwang-Man;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 1987
  • A kraft black liquor obtained from pulping of pine (Pinus densiflora Sieb et Zucc) was used for producing three kinds of adhesive such as black liquor-phenol formaldehyde resin, methyloeated kraft lignin-phenol formaldehyde resin, and lignin cake-phenol resin. In case of producing black liquor-phenol formaldehyde resin, about 60 percent of the phenolic resin could be replaced by black liquor. Also the optimal press condition appeared to be $160^{\circ}C$ for 7 min. (l5.77Kg/$cm^2$ in dry test, 8.54Kg/$cm^2$ in 4 hr. boil test). Phenol could be substituted up to 80-90 percent by methylolated kraft lignin. The suitable conditions of factors affecting bond quality were pH to 2.6, methanol as solvent and 0.2ml formaldehyde per 1g of the adhesives, respectively. The optimal press condition was $150^{\circ}C$ for 4 min. (188.54Kg/$cm^2$ in dry test, 10.08Kg/$cm^2$ in 4 hr. boil test). In preparing lignin cake-phenol resin, a suitable mixing ratio of phenol to powered kraft lignin was one to one by weight. The optimal press condition was $150^{\circ}C$ for 4 min.(18.46Kg/$cm^2$ in dry test, 12.31Kg/$cm^2$ in 4 hr. hoil test).

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

Preparation of Novel Polyvinylidene Fluoride (PVdF) Cation Exchange Heterogeneous Membrane and Their Adsorption Properties of Ion Selectivity (Polyvinylidene Fluoride (PVDF) 양이온 불균질막 제조 및 이온선택 흡착 특성)

  • Jeong, Min Ho;Ko, Dea Young;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.431-439
    • /
    • 2015
  • The study was evaluated and compared to commercial heterogeneous membrane in order to make cation exchange membrane set up the optimal preparing condition. The research findings show that ion exchange resin was added more than 40 wt% in order to show chemical properties of HPVDF higher than commercial heterogeneous membrane. But ion exchange resin was added less than 40 wt% in order to show mechanical properties of HPVDF higher than commercial heterogeneous membrane. According to conditions above, Electrical resistance was $1.83{\Omega}{\cdot}cm^{-1}$, water uptake was 79%, ion exchange capacity was 1.60 meq/g, and burst strength was 0.97 MPa. Also The TDS remove efficiency was measured by approximately 40%.

Multi-objective Optimization of BMPs for Controlling Water Quality in Upper Basin of Namgang Dam (남강댐 상류유역 수질관리를 위한 BMPs의 다목적 최적화)

  • Park, Yoonkyung;Lee, Jae Kwan;Kim, Jeongsook;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • Optimized BMP plans for controlling water quality using the Pareto trade-off surface curve in upper basin of Namgang Dam is proposed. The proposed alternatives consist of BMP installation scenarios in which the reduction efficiency of non-point pollutants is maximized in a given budget. The multi-objective optimization process for determining the optimal alternatives was performed without direct implementation of a watershed model such as SWAT analysis, thereby reducing the time taken. The shortening of the calculation time further enhances the applicability of the multi-objective optimization technique in preparing regional water quality management alternatives. In this study, different types of BMP are applied depending on the land use conditions. Fertilizer input control and vegetative filter strip are considered as alternatives to applying BMP to the field but only control of fertilizer input can be applied to rice paddies. Fertilizer input control and vegetative filter strip can be installed separately or simultaneously in a hydrologic response unit. Finally, 175 BMP application alternatives were developed for the water quality management of the upper river basin of Namgang dam. The proposed application alternative can be displayed on the map, which has the advantage of clearly defining the BMP installation location.

Preparation of Alginate Microspheres by Rotating Membrane Emulsification (회전 막유화에 의한 알지네이트 미소 구체의 제조)

  • Min, Kyoung Won;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.52-60
    • /
    • 2021
  • When preparing calcium alginate microspheres using rotating membrane emulsification that rotates SPG (Shirasu porous glass) tubular membrane in the continuous phase, the optimal conditions of rotating membrane emulsification process parameters for producing monodisperse microspheres were determined. We determined the effects of process parameters of rotating membrane emulsification (the rotating speed of membrane module, the transmembrane pressure, the ratio of dispersed phase to continuous phase, the alginate concentration, the emulsifier concentration, the stabilizer concentration, the crosslinking agent concentration, and the membrane pore size) on the mean size and size distribution of alginate microspheres. As a result, the size of the microspheres decreased as the rotating speed of membrane module, the emulsifier concentration, and the crosslinking agent concentration increased among the process parameters of rotating membrane emulsification. On the contrary, as the ratio of dispersed phase to continuous phase, the transmembrane pressure, and the alginate concentration increased, the size of the microspheres increased. In the rotating membrane emulsification using an SPG membrane with a pore size of 3.2 ㎛, it was possible to finally prepare monodisperse alginate microspheres with a particle size of 4.5 ㎛ through the control of process parameters.

Optimization of Alkali Extraction for Preparing Oat Protein Concentrates from Oat Groat by Response Surface Methodology (반응표면분석법을 이용한 쌀귀리 단백질의 알칼리 추출 공정 최적화)

  • Jeong, Yong-Seon;Kim, Jeong-Won;Lee, Eui-Seok;Gil, Na-Young;Kim, San-Seong;Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1462-1466
    • /
    • 2014
  • In this study, an attempt was made to produce oat protein concentrates from defatted oat groat by alkali extraction. Independent variables formulated by D-optimal design were NaOH concentration (X1, 0.005~0.06 N) for extraction and precipitation pH (X2, pH 4.0~6.0), and the dependent variable was extraction yield (Y1, %). Experimental results were analyzed by response surface methodology to determine optimized extraction conditions. Extraction yield increased both with an increase in NaOH concentration of the extraction solution and when approaching a precipitation pH of 4.9, and NaOH concentrations were a major influencing parameter. Solubility of oat protein concentrates showed a minimum value (i.e., 0.1%) at pH 5 and increased substantially at pH values in the range of ${\leq}$ pH 3 or ${\geq}$ pH 7, reaching a maximum value at pH 11 (i.e., 76%). Regression equation coincided well with the results of the experiment. Optimized extraction conditions to maximize extraction yield were 0.06 N NaOH (X1) for extraction and pH 4.7 (X2) for precipitation.

Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing ʟ-Rhamnulose from ʟ-Rhamnose

  • Shen, Min;Ju, Xin;Xu, Xinqi;Yao, Xuemei;Li, Liangzhi;Chen, Jiajia;Hu, Cuiying;Fu, Jiaolong;Yan, Lishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1122-1132
    • /
    • 2018
  • In this study, we attempted to find new and efficient microbial enzymes for producing rare sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions ($50^{\circ}C$, pH 8.0, and 1 mM $Ca^{2+}$) were obtained to maximize the potential of OsRpiB in preparing $\text\tiny{L}$-rhamnulose. The catalytic properties of OsRpiB, including $K_m$, $k_{cat}$, and catalytic efficiency ($k_{cat}/K_m$), were determined as 43.47 mM, $129.4sec^{-1}$, and 2.98 mM/sec. The highest conversion rate of $\text\tiny{L}$-rhamnose under the optimized conditions by OsRpiB could reach 26% after 4.5 h. To the best of our knowledge, this is the first successful attempt of the novel biotransformation of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose by OsRpiB biocatalysis.

Preparation and Characterization of Enzymatic Oyster Hydrolysates-added Yogurt (굴 효소 가수분해물 첨가 요구르트의 제조 및 특성)

  • Chung, In-Kwon;Kim, Hye-Suk;Kang, Kyung-Tae;Choi, Jong-Duck;Heu, Min-Soo;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.926-934
    • /
    • 2006
  • The base for preparing oyster hydrolysate-added yogurt was consisted of whole milk (1,000 mL), skim milk (44.05 to 42.05 g), enzymatic oyster hydrolysates powder (OHP, 0 to 2.0 g) and pectin. The yogurt base was fermented with 7 kinds of starter cultures (3% based on yogurt volume), such as Lactobacillus acidophilus, lactobacillus bulgaricus, lactobacillus casei, Lactobacillus fermentum, Lactobacillus pentosus, Streptcoccus thermophilus and the mixed starters (L. bulgaricus and S. thermophilus) at optimal temperature. Processing condition and quality characteristics of the yogurt were evaluated by analyzing pH, titratable acidity, viscosity, viable cell count, functional properties and sensory evaluation. The results suggested that the optimal conditions for preparing the good quality yogurt revealed the mixed starters (L. bulgaricus and S. thermophilus) for starter culture, 1.0 g of 3 kDa hydrolysate for amount, and 5.5 hrs for fermentation time. The good quality yogurt showed 4.31 for pH, 1.07% for titratable acidity, 469 cps for viscosity and $4.9{\times}10^8\;CFU/mL$ for viable cell count. The hydrolysate-added yogurt was 2 times higher in ACE inhibitory and antioxidant activities than commercial yogurt, and kept good quality during storage of 15 days at $5^{\circ}C$.

Evaluation of the Physical Properties for Lightweight Bricks Made from Sewage Sludge and Wasted Glass (하수슬러지로 제조한 경량 벽돌의 물성평가)

  • Jeong, Jae-Ah;Son, Yeong-Geum;Lee, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.781-784
    • /
    • 2013
  • Ocean dumping of sewage sludge is banned. Therefore, it is needed to develop alternative treatment method. Sewage sludge and waste glass are used to prepare lightweight brick. Large amount of energy is consumed to prepare building material, because of its high preparation temperature, or above $1,200^{\circ}C$. We study to prepare lightweight brick, using sewage sludge and waste glass as raw materials in this research. Lightweight brick was made at low temperature of below $800^{\circ}C$ to reduce $CO_2$ emission by geopolymer technique. Calcination temperature, mixing ratio of sewage sludge/waste glass and water glass/water were discussed to evaluate their effect on the brick prepared. In this study, the optimal conditions for preparing bricks was $750^{\circ}C$ of firing temperature, 1.5 of mixing ratio for water glass/water and 10 : 90 wt% of sewage sludge/waste glass. At this condition, compressive strength and specific gravity of brick prepared were 5.1 MPa and 0.46, respectively. These values satisfy the criteria on a lightweight brick.

Synthesis and performance assessment of modified epoxy resins containing fatty acid (지방산 변성 에폭시수지 합성과 성능평가)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.634-646
    • /
    • 2016
  • In this work, modified epoxy resins which were well melted in mild solvent were synthesized and solubility assessment was carried out for synthesized epoxy resins. Bisphenol-A type, phenol novolac type and ortho-cresol novolac type epoxy resins were used and fatty acid, dodecyl phenol (DP) and toluene diisocyanate (TDI) were added for synthesis of modified epoxy resins containing fatty acid (MEFA). Composition was epoxy resin/fatty acid = 1.0/0.5 and fatty acid/DP = 0.25/0.25 by equivalent weight and twelve MEFAs were synthesized according to epoxy resins. Viscosity and solubility were measured for twelve MEFAs. As a result, solubility of MEFA was excellent for mild solvent according to increasement of contents of benzene ring, glycidyl group and carbon number of alkyl group. And physical properties were measured for each coating of paints after preparing transparent paints of MEFA to melt well in mild solvent among twelve MEFAs. As a result, they showed an optimal performance on conditions of equivalent ratio of bisphenol-A type epoxy resin/fatty acid/DP/TDI; 1.0/0.25/0.25/0.5 and equivalent ratio of phenol novolac type epoxy resin/fatty acid/DP; 1.0/0.25/0.25 for drying time, adhesion, hardness, impact resistance and alkali resistance.