• 제목/요약/키워드: optimal power allocation

검색결과 257건 처리시간 0.022초

Unified Optimal Power Allocation Strategy for MIMO Candidates in 3GPP HSDPA

  • Kim, Sung-Jin James;Kim, Ho-Jin;Lee, Kwang-Bok
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.768-776
    • /
    • 2005
  • We compare the achievable throughput of time division multiple access (TDMA) multiple-input multiple-output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum-rate capacity of space-time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi-user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi-user channel problems.

  • PDF

ESG투자를 통한 최적자산배분과 후생개선 요인분석에 관한 연구 (A Study on the Analysis of Optimal Asset Allocation and Welfare Improvemant Factors through ESG Investment)

  • 현상균;이정석;이준희
    • 품질경영학회지
    • /
    • 제51권2호
    • /
    • pp.171-184
    • /
    • 2023
  • Purpose: First, this paper suggests an alternative approach to find optimal portfolio (stocks, bonds and ESG stocks) under the maximizing utility of investors. Second, we include ESG stocks in our optimal portfolio, and compare improvement of welfares in the case with and without ESG stocks in portfolio. Methods: Our main method of analysis follows Brennan et al(2002), designed under the continuous time framework. We assume that the dynamics of stock price follow the Geometric Brownian Motion (GBM) while the short rate have the Vasicek model. For the utility function of investors, we use the Power Utility Function, which commonly used in financial studies. The optimal portfolio and welfares are derived in the partial equilibrium. The parameters are estimated by using Kalman filter and ordinary least square method. Results: During the overall analysis period, the portfolio including ESG, did not show clear welfare improvement. In 2017, it has slightly exceeded this benchmark 1, showing the possibility of improvement, but the ESG stocks we selected have not strongly shown statistically significant welfare improvement results. This paper showed that the factors affecting optimal asset allocation and welfare improvement were different each other. We also found that the proportion of optimal asset allocation was affected by factors such as asset return, volatility, and inverse correlation between stocks and bonds, similar to traditional financial theory. Conclusion: The portfolio with ESG investment did not show significant results in welfare improvement is due to that 1) the KRX ESG Leaders 150 selected in our study is an index based on ESG integrated scores, which are designed to affect stability rather than profitability. And 2) Korea has a short history of ESG investment. During the limited analysis period, the performance of stock-related assets was inferior to bond assets at the time of the interest rate drop.

Outage Probability of Two-Hop Relay Networks with Related Interference

  • Pan, Peisheng;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1786-1804
    • /
    • 2013
  • We consider a specific interference-limited wireless relay system that comprises several cooperation units (CUs) which are defined as a source and destination node pair with an associated relay node. In the wireless relay system, all source nodes simultaneously transmit their own signals and the relay node in each CU then forwards the received signal to the destination node, causing co-channel interference at both the relay node and the destination node in each CU. The co-channel interference at the relay node is closely related to that at the destination node in each CU. We first derive the end-to-end outage probability in a CU over Rayleigh slow-fading channels with interference for the decode-and-forward (DF) relaying strategy. Then, on the assumption that each CU is allocated with equal power we design an optimal power allocation between the source node and the relay node in each CU to minimize the outage probability of the investigated CU. At last, in the case that each CU is not allocated with equal power and the sum of their power is constrained, we present an optimal power allocation between CUs to minimize the sum of the outage probability of all CUs. The analytical results are verified by simulations.

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

경쟁적 전력시장 하에서의 최적조류계산 응용에 관한 연구 (The uses of Optimal Power Flow in Competitive Electric Power market)

  • 허돈;박종근;김발호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권8호
    • /
    • pp.379-387
    • /
    • 2001
  • This paper shows that we can make simple modifications to an existing optimal power flow(OPF) algorithm that minimizes generation costs in order to solve the maximization of social welfare objective of the OPF in a competitive electric power market. We have illustrated the potential for the use of OPF in light of the marked impacts on nodal prices and generation/demand allocation levels among competing suppliers. This paper can provide all market players with the transparent information that ensures sufficient control over producers and consumers in case of economic of secure operation with transmission line outage while maximizing the sum of participants social benefit of participating in the electricity energy market.

  • PDF

Spectrum Allocation and Service Control for Energy Saving Based on Large-Scale User Behavior Constraints in Heterogeneous Networks

  • Yang, Kun;Zhang, Xing;Wang, Shuo;Wang, Lin;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3529-3550
    • /
    • 2016
  • In heterogeneous networks (HetNets), energy saving is vital for a sustainable network development. Many techniques, such as spectrum allocation, network planning, etc., are used to improve the network energy efficiency (EE). In this paper, micro BSs utilizing cell range expansion (CRE) and spectrum allocation are considered in multi-channel heterogeneous networks to improve EE. Hotspot region is assumed to be covered by micro BSs which can ensure that the hotspot capacity is greater than the average demand of hotspot users. The expressions of network energy efficiency are derived under shared, orthogonal and hybrid subchannel allocation schemes, respectively. Particle swarm optimization (PSO) algorithm is used to solve the optimal ratio of subchannel allocation in orthogonal and hybrid schemes. Based on the results of the optimal analysis, we propose three service control strategies on the basis of large-scale user behaviors, i.e., adjust micro cell rang expansion (AmCRE), adjust micro BSs density (AmBD) and adjust micro BSs transmit power (AmBTP). Both theoretical and simulation results show that using shared subchannel allocation scheme in AmBD strategies can obtain maximal EE with a very small area ratio. Using orthogonal subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is larger. Using hybrid subchannel allocation scheme in AmCRE strategies can obtain maximal EE when area ratio is large enough. No matter which service control strategy is used, orthogonal spectrum scheme can obtain the maximal hotspot user rates.

Geolocation Spectrum Database Assisted Optimal Power Allocation: Device-to-Device Communications in TV White Space

  • Xue, Zhen;Shen, Liang;Ding, Guoru;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.4835-4855
    • /
    • 2015
  • TV white space (TVWS) is showing promise to become the first widespread practical application of cognitive technology. In fact, regulators worldwide are beginning to allow access to the TV band for secondary users, on the provision that they access the geolocation database. Device-to-device (D2D) can improve the spectrum efficiency, but large-scale D2D communications that underlie TVWS may generate undesirable interference to TV receivers and cause severe mutual interference. In this paper, we use an established geolocation database to investigate the power allocation problem, in order to maximize the total sum throughput of D2D links in TVWS while guaranteeing the quality-of-service (QoS) requirement for both D2D links and TV receivers. Firstly, we formulate an optimization problem based on the system model, which is nonconvex and intractable. Secondly, we use an effective approach to convert the original problem into a series of convex problems and we solve these problems using interior point methods that have polynomial computational complexity. Additionally, we propose an iterative algorithm based on the barrier method to locate the optimal solution. Simulation results show that the proposed algorithm has strong performance with high approximation accuracy for both small and large dimensional problems, and it is superior to both the active set algorithm and genetic algorithm.

WABA및 가도리니움 독봉 집합체에 대한 핵특성 비교 및 집합체내 가도리니아봉 위치 최적 선정 (Comparison of WABA and Gd Burnable Absorbers Nuclear Characteristics and Optimal Allocation of Gd Rods in Fuel Assembly)

  • Jung, Byung-Ryul;Yi, Yu-Han;Lee, Un-Chul;Park, Chan-Oh
    • Nuclear Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.352-362
    • /
    • 1991
  • 가압 경수로의 노심 설계에 있어서 제한된 우라늄 자원의 효율적인 이용을 위한 다양한 방안으로 장주기 운전, 고연소도 및 저누출 장전 모형 통을 강구하고 있는 추세이다. 이러한 노심들은 원자로 운전 주기 전반에 걸친 공간적 출력 분포 제어와 잉여 반응도 제어를 위해 가연성 독물질을 사용하고 있다. 이와 관련하여 가연성 독물질 관리의 최적화 연구가 다각도로 진행되고 있다. 본 연구에서는 1990년도부터 국내 가압 경수로에 국산 핵연료가 장전되기 시작하면서 가도리니아 독봉을 사용하고 있으며 장차 주된 가연성 독물질로 쓰일 예정이므로 이에 대해서 분석을 수행하였다. 분석 결과 가도리니아 독봉은 열중성자 흡수 단면적이 매우 큰데서 기인한 특이한 연소 특성을 보이고 있다. 특히 집합체 내에서의 가도리니아 독봉의 위치에 따라 매우 다양한 출력 분포를 보이고 있다. 이러한 다양한 출력 분포 중에서 노심의 반경 방향 첨두 출력을 가능한 낮게하는 집합체 내에서의 가도리니아봉 위치 최적 선정을 위한 방법론을 제시하였다.

  • PDF

Improved Scheduling Approach IN SC-FDMA

  • Elshakwi, Saleh.Y.;Abdulrahman, Tarek
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권6호
    • /
    • pp.350-356
    • /
    • 2013
  • Single Carrier Frequency Domain Multiple Access (SC-FDMA) has proven to be the best long term evolution for uplink multiple access because of its low Peak to Average Power Ratio (PAPR), a feature that leads to low power consumption. This is achievable only if the resource allocation is performed in a contiguous manner. This paper proposes a new approach with an improvement in the global resources allocation. The new approach presented utilizes the gain function, which adopts some of the procedures deduced from the older Recursive Maximum Expansion (RME) algorithm. The experiment proved that the new approach is better than the original RME algorithms and in most cases, is closer to the optimal solution.

  • PDF

Joint Relay Selection and Resource Allocation for Cooperative OFDMA Network

  • Lv, Linshu;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.3008-3025
    • /
    • 2012
  • In this paper, the downlink resource allocation of OFDMA system with decode-and-forward (DF) relaying is investigated. A non-convex optimization problem maximizing system throughput with users' satisfaction constraints is formulated with joint relay selection, subcarrier assignment and power allocation. We first transform it to a standard convex problem and then solve it by dual decomposition. In particular, an Optimal resource allocation scheme With Time-sharing (OWT) is proposed with combination of relay selection, subcarrier allocation and power control. Due to its poor adaption to the fast-varying environment, an improved version with subcarrier Monopolization (OWM) is put forward, whose performance promotes about 20% compared with that of OWT in the fast-varying vehicular environment. In fact, OWM is the special case of OWT with binary time-sharing factor and OWT can be seen as the tight upper bound of the OWM. To the best of our knowledge, such algorithms and their relation have not been accurately investigated in cooperative OFDMA networks in the literature. Simulation results show that both the system throughput and the users' satisfaction of the proposed algorithms outperform the traditional ones.