• Title/Summary/Keyword: optimal plastic design

Search Result 201, Processing Time 0.024 seconds

A Study on Volumetric Shrinkage of Injection Molded Part by Neural Network (신경회로망을 이용한 사출성형품의 체적수축률에 관한 연구)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.224-233
    • /
    • 1999
  • The quality of injection molded parts is affected by the variables such as materials, design variables of part and mold, molding machine, and processing conditions. It is difficult to consider all the variables at the same time to predict the quality. In this paper neural network was applied to analyze the relationship between processing conditions and volumetric shrinkage of part. Engineering plastic gear was used for the study, and the learning data was extracted by the simulation software like Moldflow. Results of neural network was good agreement with simulation results. Nonlinear regression model was formulated using the test data of 3,125 obtained from neural network, Optimal processing conditions were calculated to minimize the volumetric shrinkage of molded part by the application of RQP(Recursive Quadratic Programming) algorithm.

  • PDF

A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method (유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Determination of Valve Gate Open Timing for Minimizing Injection Pressure of an Automotive Instrument Panel (자동차용 인스트루먼트 패널의 사출압력 최소화를 위한 밸브 게이트 열림 시점 결정)

  • Cho, Sung-Bin;Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.46-51
    • /
    • 2012
  • Injection pressure, an important factor in filling process, should be minimized to enhance injection molding quality. Injection pressure can be controlled by valve gate open timing. In this work, we decided the valve gate open timing to minimize the injection pressure. To solve this design problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding CAE tool, to PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration, and Design Optimization) tool using the file parsing method. In order to reduce computational cost, we performed an approximate optimization using meta-models that replaced expensive computer simulations. At first, we carried out DOE (Design of Experiments) using OLHD (Optimal Latin Hypercube Design) available in PIAnO. Then, we built Kriging models using the simulation results at the sampling points. Finally, we used micro GA (Genetic Algorithm) available in PIAnO. Using the proposed design approach, the injection pressure has been reduced by 13.7% compared to the initial one. This design result clearly shows the validity of the proposed design approach.

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut (Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

Master Packaging System of Fresh Produce (신선 농산물의 마스터 포장 시스템)

  • Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Properly designed plastic packages of fresh produce can preserve the quality by maintaining the optimal modified atmosphere (MA) at optimal low temperature conditions, but cannot do so at temperature abuse conditions in retail stage due to occurrence of injurious package atmosphere coming from imbalance between respiration and package gas permeation. Master packaging system consisting of a double-layered secondary package wrapping several individual (primary) packages has been proposed and applied recently to the commodities of sweet persimmon, king oyster mushroom, chestnut and strawberry. The master (secondary) pack is designed to be stored and distributed under chilled temperature, and then dismantled when moved to the retail display from the presale chilled storage. The master packaging system taking into consideration temperature dependence of produce respiration and package gas transfer was looked into with examination of its design variables to maintain the beneficial MA. Mathematical model was provided to help the design of master packaging system creating the desired MA. Its benefits of quality preservation and its limitations in practices of fresh produce marketing were discussed. Further research direction to extend the applicability of the produce master packaging system was presented.

  • PDF

Construction of a Support System for Determining the Condition of Injection Molding (사출성형 조건 설정 지원시스템 구축)

  • Yi Il-Lang;Kim Bo-Hyun;Baek Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.68-77
    • /
    • 2005
  • The set-up of an injection molding process is a ye complicated and time-consuming job because it is required to well determine a lot of variables closely related to products. Thus, the productivity of the set-up process mainly depends on operators' expertise and know-how. To solve the problem mentioned before, this research constructs a support system which helps operators determining the condition of the injection molding easily and systematically. The construction of the support system consists of the following four steps: 1) to determine the control variables which affect the target defect types, 2) to design and implement UI(user interface) using a scenario of set-up process, 3) to design and implement the search algorithms for the initial and optima] condition, and 4) to construct the embedded system which integrates the support system with the operating system of a plastic injection molding machine. The test experiments of some typical products are performed using the embedded system to verify the validity of the support system.

Design of STS304 Extrusion Die for Wear Reduction (스테인리스강 압출금형의 마멸 감소를 위한 설계)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.106-113
    • /
    • 1996
  • Using stainless steel as the cold forged parts especially the outer parts of automobile is gradually increasing because it can bear up against the erosion and the wear. During cold forging of the stainless steel the working pressure acting on die surface are very high therefore the wear on die surface can be greatly increased. In cold forging processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of forged parts, metal flow and costs of processes etc. The only way to to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the desing stage in order to optimize the process. In this paper, the rigid-plastic finite element method was combined with the wear prediction routine and then the forward extrusion process using stainless steel was analysed simultaneously. To minimize the die wear the FPS algorithm was applied and the optimal conditions of die configuration are suggested.

  • PDF

Design of the Anvil Shape in Sizing Press for Decrease of the Defect Generated Width Reduction (사이징 프레스에서 폭 압하 공정중 결함 저감을 위한 엔빌의 형상설계)

  • Lee, S.H.;Lee, S.J.;Lee, J.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • Generally, a vertical rolling process is used to achieve extensive width reduction in hot strip mill. However, it is impossible to avoid the defects such as dog-bone and edge-seam defect. The sizing press process has been developed in response to the defects mentioned above. Especially, this study is carried out to investigate the deformation of slab by two-step sizing press. The deformation behavior of slab in the sizing press process is more favorable than that in conventional vertical rolling edger. The FE-simulation is applied to predict the deformation behavior of the slab. In this paper, the several causes of the asymmetrical deformation are mentioned for the purpose of understanding of the anvil shape. Load, dog-bone and edge-seam defect are discussed in width sizing process considering the anvil shape. And to reduce the problems generated at rougher mill just after sizing press, these are studied in this paper. The deformation behavior of slabs and optimum anvil shape are obtained by rigid-plastic finite element analyses and neural network.

A Fundamental Study on the Determination of Optimal Mixing Ratio for Development of Standard Reference Materials for Concrete (콘크리트용 표준물질(Standard Reference Materials)개발의 최적배합비율 결정을 위한 기초연구)

  • Lee, Dong Kyu;Choi, Myoung Sung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.111-118
    • /
    • 2019
  • Recently, a variety of special concrete structures have been designed in domestic and overseas construction markets and more advanced construction technology is required. Therefore, it is necessary to secure quantitative construction technology. For this purpose, it is essential to develop a standard reference material having a constant flow performance and quality to evaluate quantitative performance. On the other hand, the flowability of the concrete is greatly influenced by the flowability of the cement paste. Also, in consideration of design strength and workability, mix design is carried out at various mixing ratios according to the purpose of the site. Therefore, in this study, based on the derived components of standard reference materials for cement paste, we suggested mixing ratio of standard reference materials that can uniformly simulate the flow characteristics of cement paste according to W/C. As a result, it was found that the yield stress was determined by the ratio of water and glycerol but plastic viscosity was controled by limestone content. Finally, the ratio of standard reference materials to simulate the rheological range of cement paste by W/C was suggested.

Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow (유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석)

  • Yeom, Sung-Ho;Kim, Bum-Nyun;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • Friction welding is a welding method to use frictional heat of a couple of materials. In this paper object is that design the welding part shape with the flow gallery part which there is no effect in flow. Decided the welding part design parameter and doing the friction welding analysis used the rigid-plastic FEM program DEFORM-2D. To do friction welding analysis must input necessary flow stress data, friction coefficient by temperature change, upset pressure and Revolution per minute etc. According to analysis result, it decided the optimal shape of welding part with no effect in flow.