• Title/Summary/Keyword: optimal path tracking

Search Result 49, Processing Time 0.022 seconds

Routing Protocol of Shipping Container Network suitable for Port/Yard Stacking Environment: SAPDS(Simple Alternative Path Destined for Sink node) (항만/야적장 적치 환경에 적합한 컨테이너 네트워크 라우팅 프로토콜: SAPDS(Simple Alternative Path Destined for Sink node))

  • Kwark, Gwang-Hoon;Lee, Jae-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.728-737
    • /
    • 2011
  • For the real time monitoring and tracking of shipping container which is one of the core objects for global logistics, Wireless Ad-Hoc Network technology might be needed in stacking environments such as ports, yards and ships. In this paper, we propose a container network routing protocol suitable for port or yard stacking environments which include some constraints such as shadow area problem from metal material, frequent movement of container, etc. With this protocol in which a mesh network algorithm is applied, every container data packet can be delivered to the sink node reliably even with frequent join/leave of container nodes. As soon as a node on path gets malfunction, alternative backup path is supported with notice to neighbor node, which makes constant total optimal path. We also verified that the performance of proposed protocol is better than AODV, one of previous major MANet(Mobile Ad-Hoc Network) protocol with a function for alternative path, which says the proposed protocol is better for frequent join/leave and variable link quality.

Study on optimal steering control of an unmanned cart (無人 搬送車의 最適 操向制御)

  • 김옥현;정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 1987
  • An optimal control procedure is presented for steering of an unmanned cart which has two motored wheels on its left and right side. Steering, running and stopping are enabled by controlling the motor speed independently. An optimal proportional-plus-integral control is employed to eliminate steady state error which is sustained by a simple proportional control for tracking a circular arc path. A simple and readily-implemented suboptimal control is also examined. The suboptimal control gives comparable performance and therefore provides an effective approach for industrial application of the unmanned cart. Effects of design parameters of unmanned cart such as forward velocity, wheel radius and position of sensor are investigated. It is shown that within the practicable values of the parameters the controlled performance improves rapidly with increase of those parameters then the improvement becomes negligible, which suggests base values over which the parameters should be taken.

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes (외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking (구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계)

  • Park Chongkug;Kim Sangwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

Investigation of the visual search patterns of the cockpit displays for the ergonomic cockpit design (인간공학적 조종실 설계를 위한 계기 탐색 형태에 관한 연구)

  • Song Young-Woong;Lee Jong-Seon
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.71-80
    • /
    • 2006
  • There are many display panels in the flight cockpit and pilots get various flight information from those displays. The ergonomic layout of the displays must be determined based upon frequency of use and sequence of use. This study investigated the visual search patterns of the six display groups(one head-up-display: HUD, two multi function displays: MFDs, one engine group: EG, one flight display group: FD and others) in a fighting aircraft. Four expert pilots conducted Imaginary flight in the physical mock-up and the eye movements were collected using eye tracking system. Data of dwell time, frequency of use, and eye movement path were collected. Pilots spent most of time on HUD(55.2%), and others (21.6%), FD(14.2%), right MFD(4.7%), EG(3.2%), and left MFD(1.1%) in descending order. Similarly HUD(42.8%) and others(30.0%) were the most frequently visited displays. These data can be used in the layout of cockpit displays and the determination of optimal visual search pattern.

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

Robust Depth Measurement Using Dynamic Programming Technique on the Structured-Light Image (구조화 조명 영상에 Dynamic Programming을 사용한 신뢰도 높은 거리 측정 방법)

  • Wang, Shi;Kim, Hyong-Suk;Lin, Chun-Shin;Chen, Hong-Xin;Lin, Hai-Ping
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.69-77
    • /
    • 2008
  • An algorithm for tracking the trace of structured light is proposed to obtain depth information accurately. The technique is based on the fact that the pixel location of light in an image has a unique association with the object depth. However, sometimes the projected light is dim or invisible due to the absorption and reflection on the surface of the object. A dynamic programming approach is proposed to solve such a problem. In this paper, necessary mathematics for implementing the algorithm is presented and the projected laser light is tracked utilizing a dynamic programming technique. Advantage is that the trace remains integrity while many parts of the laser beam are dim or invisible. Experimental results as well as the 3-D restoration are reported.

  • PDF

A Study of Guide System for Cerebrovascular Intervention (뇌혈관 중재시술 지원 가이드 시스템에 관한 연구)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Yoon, Kwon-Ha;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.1
    • /
    • pp.101-107
    • /
    • 2016
  • Due to the recent advancement in digital imaging technology, development of intervention equipment has become generalize. Video arbitration procedure is a process to insert a tiny catheter and a guide wire in the body, so in order to enhance the effectiveness and safety of this treatment, the high-quality of x-ray of image should be used. However, the increasing of radiation has become the problem. Therefore, the studies to improve the performance of x-ray detectors are being actively processed. Moreover, this intervention is based on the reference of the angiographic imaging and 3D medical image processing. In this paper, we propose a guidance system to support this intervention. Through this intervention, it can solve the problem of the existing 2D medical images based vessel that has a formation of cerebrovascular disease, and guide the real-time tracking and optimal route to the target lesion by intervention catheter and guide wire tool. As a result, the system was completely composed for medical image acquisition unit and image processing unit as well as a display device. The experimental environment, guide services which are provided by the proposed system Brain Phantom (complete intracranial model with aneurysms, ref H+N-S-A-010) was taken with x-ray and testing. To generate a reference image based on the Laplacian algorithm for the image processing which derived from the cerebral blood vessel model was applied to DICOM by Volume ray casting technique. $A^*$ algorithm was used to provide the catheter with a guide wire tracking path. Finally, the result does show the location of the catheter and guide wire providing in the proposed system especially, it is expected to provide a useful guide for future intervention service.