• 제목/요약/키워드: optimal path generation

Search Result 88, Processing Time 0.023 seconds

Path Planning of Autonomous Guided Vehicle Using fuzzy Control & Genetic Algorithm (유전자 알고리즘과 퍼지 제어를 적용한 자율운송장치의 경로 계획)

  • Kim, Yong-Gug;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.397-406
    • /
    • 2000
  • Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.

  • PDF

Study on the Development of Post-Processor for 5-Axis NC Machining (5축 가공용 Post-Processor 개발에 관한 연구)

  • Jo, E.J.;Hwang, J.D.;Jung, Y.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2006
  • This study deals with the method of post-processing in the automatic tool path generation for 5-axis NC machining. The 5-axis NC machining cannot only cope with the manufacturing of complicated shapes, but also offers numerous advantages such as reasonable tool employment, great reduction of set-up process and so on. Thus 5-axis NC machining has been used for aircraft parts, mold and die as well as for complicated shapes such as impeller, propeller and rotor. However, most of the present CAM systems for 5-axis NC machining have limited functions in terms of tool collision, machine limits and post-processing. Especially 5-axis machine configurations are various according to the method which the rotational axes are adapted with the table and spindle. For that reason, In many cases the optimal numerical control (NC) data cannot be obtained or considerable time is consumed. To solve this problem, we applied a general post-processor for 5-axis NC machining. The validity of this post-processor should be experimentally confirmed by successfully milling to a helix shaped workpiece.

A Disaster Evacuation System Using Smart Devices for Indoor Crisis Management in BLE Environments (BLE 환경에서 실내 위기관리를 위한 스마트 장치 기반의 재난대피 시스템)

  • Jang, Minsoo;Jeong, Wooyong;Lim, Kyungshik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.281-296
    • /
    • 2015
  • This paper describes a novel disaster evacuation system using embedded systems such as smart devices for crisis and emergency management. In indoor environments deployed with the Bluetooth Low Energy(BLE) beacons, smart devices detect their indoor positions from beacon messages and interact with Map Server(MS) and Route Server(RS) in the Internet over the LTE and/or Wi-Fi functions. The MS and RS generate an optimal path to the nearest emergency exit based on a novel graph generation method for less route computation, called the Disaster Evacuation Graph(DEG), for each smart device. The DEG also enables efficient processing of some constraints in the computation of route, such as load balancing in situation of different capacities of paths or exits. All data interfaces among three system components, the MS, RS, smart devices, have been defined for modular implementation of our disaster evacuation system. Our experimental system has been deployed and tested in our building thoroughly and gives a good evidence that the modular design of the system and a novel approach to compute emergency route based on the DEG is competitive and viable.

Effect of viscosity ratio and AN content on the compatibilization of PC-SAN blends during ultrasound-assisted melt mixing

  • Kim, Hyung-Su;Yang, Hyun-Suk;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.165-170
    • /
    • 2005
  • In this study, high intensity ultrasound was employed to induce mechano-chemical degradation during melt mixing of polycarbonate (PC) and a series of styrene-acrylonitrile (SAN) copolymers. It was confirmed that generation of macroradicals of constituent polymers can lead to in-situ copolymer formation by their mutual combination, which should be an efficient path to compatibilize immiscible polymer blends and stabilize their phase morphology in the absence of other chemical agents. Based on the effectiveness of the compatibilization by ultrasound assisted mixing process, we investigated the effects of viscosity ratio of PC and SAN and AN content in SAN on the compatibilization of PC/SAN blends. It was found that effectiveness of compatibilization is optimal when the AN content is in the range of favorable interaction with PC and the viscosity of the matrix is higher than that of the dispersed phase. In addition, changes in the interfacial tension between PC and SAN were assessed by examining relaxation spectra which were obtained from measuring rheological properties of ultrasonically treated blends.

Study on the Development of Post-Processor for 5-Axis NC machining (5축가공용 Post-Processor 개발에 관한 연구)

  • Hwang J.D.;Jung Y.G.;Jung J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.370-374
    • /
    • 2005
  • This study deals with the method of post-processing in the automatic tool path generation for 5-axis NC machining. The 5-axis NC machining cannot only cope with the manufacturing of complicated shapes, but also offers numerous advantages such as reasonable tool employment, great reduction of set-up process and so on. Thus 5-axis NC machining has been used fur aircraft parts, mold and die as well as for complicated shapes such as impeller, propeller and rotor. However, most of the present CAM systems for 5-axis NC machining have limited functions in terms of tool collision, machine limits and post-processing. Especially 5-axis machine configurations are various according to the method which the rotational axes are adapted with the table and spindle. For that reason, in many cases the optimal numerical control (NC) data cannot be obtained or considerable time is consumed. To solve this problem, we applied a general post-processor fur 5-axis NC machining. The validity of this post-processor should be experimentally confirmed by successfully milling to a helix shaped workpiece.

  • PDF

Coverage and Energy Modeling of HetNet Under Base Station On-Off Model

  • Song, Sida;Chang, Yongyu;Wang, Xianling;Yang, Dacheng
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.450-459
    • /
    • 2015
  • Small cell networks, as an important evolution path for next-generation cellular networks, have drawn much attention. Different from the traditional base stations (BSs) always-on model, we proposed a BSs on-off model, where a new, simple expression for the probabilities of active BSs in a heterogeneous network is derived. This model is more suitable for application in practical networks. Based on this, we develop an analytical framework for the performance evaluation of small cell networks, adopting stochastic geometry theory. We derive the system coverage probability; average energy efficiency (AEE) and average uplink power consumption (AUPC) for different association strategies; maximum biased received power (MaBRP); and minimum association distance (MiAD). It is analytically shown that MaBRP is beneficial for coverage but will have some loss in energy saving. On the contrary, MiAD is not advocated from the point of coverage but is more energy efficient. The simulation results show that the use of range expansion in MaBRP helps to save energy but that this is not so in MiAD. Furthermore, we can achieve an optimal AEE by establishing an appropriate density of small cells.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

Improved Anatomical Landmark Detection Using Attention Modules and Geometric Data Augmentation in X-ray Images (어텐션 모듈과 기하학적 데이터 증강을 통한 X-ray 영상 내 해부학적 랜드마크 검출 성능 향상)

  • Lee, Hyo-Jeong;Ma, Se-Rie;Choi, Jang-Hwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.55-65
    • /
    • 2022
  • Recently, deep learning-based automated systems for identifying and detecting landmarks have been proposed. In order to train such a deep learning-based model without overfitting, a large amount of image and labeling data is required. Conventionally, an experienced reader manually identifies and labels landmarks in a patient's image. However, such measurement is not only expensive, but also has poor reproducibility, so the need for an automated labeling method has been raised. In addition, in the X-ray image, since various human tissues on the path through which the photons pass are displayed, it is difficult to identify the landmark compared to a general natural image or a 3D image modality image. In this study, we propose a geometric data augmentation technique that enables the generation of a large amount of labeling data in X-ray images. In addition, the optimal attention mechanism for landmark detection was presented through the implementation and application of various attention techniques to improve the detection performance of 16 major landmarks in the skull. Finally, among the major cranial landmarks, markers that ensure stable detection are derived, and these markers are expected to have high clinical application potential.