• Title/Summary/Keyword: optimal farming system

Search Result 41, Processing Time 0.027 seconds

Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

  • Min, Sang Yoon;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.545-554
    • /
    • 2020
  • Background and objective: Moth orchids in the vegetative stage are suitable for a multi-layer growing environment in a closed-type plant factory which can be a good alternative that can reduce production costs by reducing cultivation time and energy cost per plant. This study was conducted to find out the optimal rhizospheric environment for different irrigation methods without a potting medium and rhizospheric ventilation for the vegetative growth of young Phalaenopsis hybrid 'Blanc Rouge' (P. KV600 × P. Kang 1) and Phalaenopsis Queen Beer 'Mantefon' in a closed-type plant factory system. Methods: The one-month-old clonal micropropagules with bare roots rapped with a sponges were fixed on the holes of styrofoam plates above growth beds, and were watered using the ebb-and-flow (EBB) and aeroponic (AER) methods with Ichihashi solution (0.5 strength) once a day at 06:00 (P) or 18:00 (S), and both (PS). Rhizospheric ventilation (V) was also applied to change the temperature, relative humidity, and CO2 concentration of the beds. Plants potted into sphagnum moss and watered once a week were used as the control group. Results: After 12 months of treatment, the growth characteristics of the EBB groups were the best among the treatment groups without a medium, but no effect of irrigation timing was observed. V reduced the temperature, relative humidity and CO2 concentration of the beds. Whereas, EBB+V (ebb-and-flow with ventilation) improved plant growth and reduced the occurrence of disorders and withering. Especially, EBB+V showed a similar performance to the control group. Conclusion: The results indicated that the optimal irrigation method without a potting medium for producing middle-aged potted moth orchids was the EBB system with forced rhizospheric ventilation. Therefore, further studies on the optimal ventilation method and moisture control of the crown need to be carried out to develop the irrigation system without a potting medium for vertical farming in closed-type plant factories.

A Study on the Design of Smart Farm Heating Performance using a Film Heater (필름 히터를 이용한 스마트 팜 난방 성능 설계에 관한 연구)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • This paper presents the optimal design of a heating system using radiant heating elements for application in smart farms. Smart farming, an advanced agricultural technology, is based on artificial intelligence and the internet of things and promotes crop production. Temperature and humidity regulation is critical in smart farms, and thus, a heating system is essential. Radiant heating elements are devices that generate heat using electrical energy. Among other applications, radiant heating elements are used for environmental control and heating in smart farm greenhouses. The performance of these elements is directly related to their electrical energy consumption. Therefore, achieving a balance between efficient electrical energy consumption and maximum heating performance in smart farms is crucial for the optimal design of radiant heating elements. In this study, the size, electrical energy supply, heat generation efficiency, and heating performance of radiant heating elements used in these heating systems were investigated. The effects of the size and electrical energy supply of radiant heating elements on the heating performance were experimentally analyzed. As the radiant heating element size increased, the heat generation efficiency improved, but the electrical energy consumption also increased. In addition, increasing the electrical energy supply improved both the heat generation efficiency and heating performance of the radiant heating elements. Based on these results, a method for determining the optimal size and electrical energy supply of radiant heating elements was proposed, and it reduced the electrical energy consumption while maintaining an appropriate heating performance in smart farms. These research findings are expected to contribute to energy conservation and performance improvement in smart farming.

Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds

  • Jiksing, Calvin;Ongkudon, McMarshall M.;Thien, Vun Yee;Rodrigues, Kenneth Francis;Yong, Wilson Thau Lym
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.105-121
    • /
    • 2022
  • Modern seaweed farming relies heavily on seedlings from natural beds or vegetative cuttings from previous harvests. However, this farming method has some disadvantages, such as physiological variation in the seed stock and decreased genetic variability, which reduces the growth rate, carrageenan yield, and gel strength of the seaweeds. A new method of seedling production that is sustainable, scalable, and produces a large number of high-quality plantlets is needed to support the seaweed farming industry. Recent use of tissue culture and micropropagation techniques in eucheumatoid seaweed production has yielded promising results in increasing seed supply and growing uniform seedlings in large numbers in a shorter time. Several seaweed species have been successfully cultured and regenerated into new plantlets in laboratories using direct regeneration, callus culture, and protoplast culture. The use of biostimulants and plant growth regulators in culture media increases the seedling quality even further. Seedlings produced by micropropagation grew faster and had better biochemical properties than conventionally cultivated seedlings. Before being transferred to a land-based grow-out system or ocean nets for farming, tissue-cultured seedlings were recommended to undergo an acclimatization process to increase their survival rate. Regular monitoring is needed to prevent disease and pest infestations and grazing by herbivorous fish and turtles during the farming process. The current review discusses recent techniques for producing eucheumatoid and other valuable seaweed farming materials, emphasizing the efficiency of micropropagation and the transition from laboratory culture to cultivation in land-based or open-sea grow-out systems to elucidate optimal conditions for sustainable seaweed production.

Sensor technology for environmental monitoring of shrimp farming (새우양식 환경 모니터링을 위한 센서기술 동향 분석)

  • Hur, Shin;Park, Jung Ho;Choi, Sang Kyu;Lee, Chang Won;Kim, Ju Wan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.154-164
    • /
    • 2021
  • In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.

Earth Analysis Method for Installation of Equipment for Moving Pesticide Spraying System (농약살포시스템 이동을 위한 기구물 설치를 위한 대지 분석방법)

  • Boo, Chang-Jin
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1152-1157
    • /
    • 2018
  • In this paper, we try to solve the difficulties of the location of the structure for the movement of the wire - based pesticide spraying equipment designed for field farming. To do this, we apply earth resistivity measurement method and analysis technique which can indirectly grasp the earth structure. Electrodes are installed on the field in a selected farming area, and multi-switches built in the control board are driven to automatically acquire ground resistivity data. Then, the optimal point suitable for the actual structure installation is selected through the site analysis using the 2D image restoration algorithm.

Effects of Pefloxacin Grinding on Pharmacokinetic Parameter in Korean Rockfish (조피볼락에서 Pefloxacin의 미분쇄가 약물동력학 Parameters에 미치는 영향)

  • 임영근;양영환;김진우;손상규;심경희;김유정;정한영;최우식;야마모토케이지
    • Journal of Life Science
    • /
    • v.9 no.3
    • /
    • pp.241-247
    • /
    • 1999
  • Antibiotics have been routinely used to control the disease of farm-raised animals in the aquaculture facilities without any criterion based on a pharmacokinetic study. This lack of information on the effective usage of antibiotics would have brought the farmers to use excessive and/or less dosages, causing the advent of drug-resistant bacteria as well as economic loss and possible contamination of the local farming area. Until recently, few studies on a detailed manual for the antibiotic usage including chemotherapy procedure, dosage, and treatment schedule of the aquatic antibiotics have been conducted throughout the world. To the worse, there is no available criterion for optimal usage of aquatic antibiotics to control diseases in aquatic farms in this country because every country has its own aquacultural system. Therefore, based on the previous studies on the usage of the various antibiotics, our studies are to focus on the development of optimal method for the detection of various antibiotics on the fate of antibiotics applied to the fish, including absorption, circulation, and secretion physiology. Pharmacokinetic study were to sep up the optimal detective condition against residual antibiotics of fish by HPLC. The grinding pefloxacin for 15 min is most effective in dissolution test and pharmacokinetic parameters. Pharmacokinetic parameters were satisfactory for 15 min-grinding products and they can be explained as one-compartment model.

  • PDF

Estimation on an Amount of the Groundwater Demand and Supply for Applying the Well-network System (WNS) to a Frequent-drought Area (관정연계이용 기술 적용을 위한 상습가뭄지역 지하수 수요-공급량 평가)

  • Lee, Byung Sun;Jeong, Chanduck;Lee, Gyusang;Ha, Kyoochul;Lee, Jong-Hwa;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.24-35
    • /
    • 2022
  • This study was conducted to estimate groundwater demand and supply for agricultural activities in a frequent-drought area that requires implementation of optimal distribution plan utilizing the well-network system (WNS). The WNS has been considered as a viable strategic way of supplying groundwater to farmlands by connecting groundwater wells physically or virtually. The study area heavily relied on groundwater resources for irrigation up to 53% due to a lack of surface water resources. Two kinds of methods, HOMWRS software and FAO approach, were used for estimating irrigation water requirements for paddy and upland fields, respectively. During the latest 10 years (2010~2019), the water requirements was estimated to be 1,106 m3/day. The requirements notably increased to 1,121~4,004 m3/day during active farming season (May to September), which exceeded the total yield capacity of pre-existing groundwater wells (2,356 m3/day) in the area. Detailed and definite determination for groundwater demand and supply helped to determine optimal scale parameters of WNS. The WNS has achieved more balanced distribution of groundwater resources for irrigation over the study area.

A Study on the Necessity and Construction Plan of the Internet of Things Platform for Smart Agriculture (스마트 농업 확산을 위한 IoT기반 개방형 플랫폼의 필요성 및 구축 방안 연구)

  • Lee, Joonyoung;Kim, ShinHo;Lee, SaeBom;Choi, HyeonJin;Jung, JaiJin
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.11
    • /
    • pp.1313-1324
    • /
    • 2014
  • Korea has high quality level of ICT Technologies, however it still have a long way to go before invigoration of ICT in agriculture industry. The government of Korea supply to agriculture ICT systems, however these are the enclosed type and insufficient the level of connectivity, compatibility, and integrity between ICT systems. Farmers can not share crop information and one system can not use with others in combination. Recently, IoT(Internet of Things) become popular to emphasize the vision of a global internet and ICT industry. The IoT is a critical technology that leads future internet generation. We believe that IoT will change status of agriculture industry and appearance of various agriculture business model. Using IoT technology is provided a platform of opportunities to optimize work processes and efficient use of energy, time and labour in farm. It can automatically control temperature, humidity, sunshine system and so on for optimal growth conditions at greenhouse and plant factory. Growth setting can even be controlled and monitored crop condition and disease by a smartphone app or PC. It is possible to improve quality of farming and farm product. We suggest that construction of IoT platform through open API in agriculture industry.

Design an Automatic System to Control and Monitor the Process of Straw Mushrooms Indoors Cultivation

  • Quoc Cuong Nguyen;Quoc Huy Nguyen;Jaesang Cha
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Current straw mushroom farming in countries with large rice growing areas has great development potential, and was once considered a way to generate additional income and reduce poverty in rural areas. However, currently most people still grow mushrooms using traditional processes, leading to low productivity and unguaranteed output quality. Currently, due to climate change and unusual weather changes, people tend to switch to growing straw mushrooms indoors. In the process of growing straw mushrooms indoors, the design of an automatic control and monitoring system is very important to ensure the growing process is carried out effectively and achieves high yields. In this paper, we propose a system that can automatically control and monitor the humidity and temperature of the indoor straw mushroom growing process and other parameters that can be monitored through a network system using Internet of Things. The control algorithm automatically adjusts the grow house equipment based on feedback from sensors to maintain an optimal environment for growing straw mushrooms. Experimental results show that the straw mushroom growing system with automatically controlled and monitored environmental parameters helps improve efficiency, reduce costs and increase the sustainability of the current straw mushroom growing industry.

Analysis of Power Generation Characteristics of Agricultural Potovoltaic Systems (농업 태양광의 발전 특성 분석)

  • Sunho, Yu;Eui-Chan, Lee;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2022
  • The transition to renewable energy, especially the expansion of photovoltaic (PV) generation, has become a global megatrend that can no longer be reserved. However, since the site for PV is limited, it is necessary to use the land efficiently. As an alternative, the concept of utility scale agricultural PV(UAPV) is a technology that continues farming in the lower part and installs PV in the upper part of farmland to efficiently use the land. Therefore, for UAPV, the growth of crops in the lower part and the optimal operation of PV in the upper part are important. In this, we analyze the characteristics of the upper PV generation system in the UAPV based on the empirical results under various conditions, and propose future research directions of the UAPV.