• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.028 seconds

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

Design of Extremely Wideband Printed Semi-circular-shaped Dipole Antenna (초광대역 인쇄형 반원모양 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2003-2008
    • /
    • 2013
  • In this paper, a design method for a ultra-wideband printed semi-circular-shaped dipole antenna operating in the band of 1-15 GHz is studied. The effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired extremely wideband characteristic with a frequency band of 1-15 GHz (175%) for a VSWR < 2.

LCL Type Series Resonant Converter with PWM Control Method (PWM 제어 방법을 이용한 LCL 직렬 공진 콘버터에 관한 연구)

  • 현동석;이요한;추병호;송인호;민경진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.19-28
    • /
    • 1997
  • A simple AC complex circuit analysis for LCL type series resonant converter with phase shift control is proposed. Based on these analyses, a set of characteristic curves which allows a optimal design procedure for this converter is shown, without increasing the volt-ampere rating of tank circuit. Especially, inverter output peak current can be minimized in both full load and partial load conditions. The presented design considerations can make the load range wide from full loads to light loads achieving turn-on with zero voltage switching (ZVS) operation. The simulation and experimental results show the effectiveness of the proposed design algorithms.

  • PDF

Interference and Efficiency analysis of 2K-H I Type Differential Gear Unit

  • Kim, Yeon-Su;Park, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2000
  • In the design of epicyclic gearing, the analysis of interference and mechanical efficiency is an important index. As an applied way, epicyclic gearing can be used for planetary gear drive and differential gear unit. In case that one of its components is fixed with intend, it is called planetary gear drive. On the contrary, in case that no component is fixed, it is called differential gear unit. In this paper, various design constraints and interferences are defined for 2K-H I type epicyclic gearing which is a basic arrangement of diverse epicyclic gearings. And various interferences are analyzed, and mechanical efficiency is calculated in case that 2K-H I epicyclic gearing is used for a differential gear unit as the change of gear ratio, cutter pressure angle, addendum modification coefficient. As that results, trend of mechanical efficiency is investigated in the ranges of addendum modification coefficients which would not lead to interferences, and the optimal range of addendum modification coefficient which can generate the maximum mechanical efficiency are presented. In order to prove results of theoretical efficiency analysis, experimental studies are performed.

  • PDF

Optimal Design and Development of a Rice Mill Pilot Plant by Computer Simulation (II) -Development and Performance Evaluation of a Rice Mill Pilot Plant- (컴퓨터 시뮬레이션에 의한 미곡 도정공장의 적정설계 및 개발(II) -미곡 도정시스템의 개발 및 성능평가-)

  • 정종훈;김보곤;최영수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.262-274
    • /
    • 1995
  • A rice mill pilot plant was designed and developed in the basis of the simulation results on the mill plants. The performance of the developed rice mill plant was evaluated, and the simulation model on the mill system was validated with the experimental data in the mill plant. The results of this study were as followings : 1. A rice mill pilot plant with the capacity of 0.5 t/h was designed and developed. 2. The hulled ratio of the mill plant was 87.3%, and the milled rice recovery and the head rice recovery of the cleaned rice were 74% and 87% , respectively. The degree of milling of the cleaned rice was 10.6% with a high polish. The intensity of the cleaned rice appeared high compared with that of the milled rice in the analysis of whiteness test using an image processing system. 3. The bottleneck, processing time, and production amount of the developed mill system almost coincided with those of the simulation of the rice mill plant. The developed simulation model of the rice mill plant was proven to be applicable to the design of a rice mill plant through experiments.

  • PDF

Communication Optimization for Energy-Efficient Networks-on-Chips (저전력 네트워크-온-칩을 위한 통신 최적화 기법)

  • Shin, Dong-Kun;Kim, Ji-Hong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.3
    • /
    • pp.120-132
    • /
    • 2008
  • Networks-on-Chip (NoC) is emerging as a practical development platform for future systems-on-chip products. We propose an energy-efficient static algorithm which optimizes the energy consumption of task communications in NoCs with voltage scalable links. In order to find optimal link speeds, the proposed algorithm (based on a genetic formulation) globally explores the design space of NoC-based systems, including network topology, task assignment, tile mapping, routing path allocation, task scheduling and link speed assignment. Experimental results show that the proposed design technique can reduce energy consumption by 28% on average compared with existing techniques.

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Development of a Hexapod Robot for Multi-terrain Reconnaissance (다양한 험지 정찰을 위한 6족 보행 로봇 개발)

  • Lim, Seoung-Yong;Kim, Jong-Hyeong;Kim, Hyeong-Gik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.667-674
    • /
    • 2015
  • This paper describes the development of a prototype hexapod robot with six circular legs to overcome a variety of challenging terrains. The legs of the robot are very important for stability during walking, which are analyzed for determining the optimal design parameters through CAE tools. Its control system consists of three types of sensors, microprocessors, and communication modules for PC interface. The entire operation of the robot can be controlled and monitored using a PC. The experimental operations for three different roads verified the feasibility of the prototype robot for carrying out reconnaissance on multi terrain. In the near future, the prototype robot can be used for a military purpose of detecting and informing a potential risk in advance.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.

A Design Method of Model Following Digital PID Controller and Its Application to Speed Control of the Current Source Inverter-Fed Induction Motor (모델추종 디지탈 PID제어기의 설계와 유도전동기에의 적용)

  • 이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, We are proposed a design method of the digital PID controller based on the model following method which minimized the error integral of the step response between the control system and the reference model. And we are applied it by a speed control of the current type inverter induction motor. The dynamic characteristic of the system was expressed by the step response, and then the optimal parameter of the PID controller can be easily obtained by the matrix computation. The derived algorithm can be implemented through a simple and systematic design procedure. Finally, We have shown the result with a computer simulation by the present method which proposed the speed control system and stable operation and fairly transient performance. And then tt was found results by experimental process.

  • PDF