• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.03 seconds

Basic Design Work of Ozone-Contactor for Advanced Oxidation Treatment (오존산화분해를 위한 오존접촉조의 기본설계 연구)

  • 박영규;이동훈
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.14-24
    • /
    • 2000
  • The water treatment by ozone was performed to remove VOC and organic substances in the multistage ozone contactor. This paper is secondary paper about the theme of ozone treatment since the first paper (Kor. Sanitary J., 15, 1(2000)) publicized, it was compared experimental results with theoretical those which were derived from the mathematical model associated with chemical reactions and mass transfer. Basic designing factors were determined as an optimal conditions for the removal rate of VOCs as follows: ozone input concentration in the contactor was 2mg/L, ozone contact time was 7 min and number of contactor was three-layered.

  • PDF

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

Design of Pad Groove in CMP using CFD (CFD를 이용한 CMP의 Pad Groove 형상 설계 연구)

  • Choi, Chi-Woong;Lee, Do-hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.21-28
    • /
    • 2003
  • CMP (Chemical Mechanical Polishing) is to achieve adequate local and global planarization for future sub-micrometer VLSI requirements. In designing CMP, numerical computation is quite helpful in terms of reducing the amount of experimental works. Stresses on pad, concentration of particles and particle tracking are studied for design. In this research, the optimization of grooved pad shape of CMP is performed through numerical investigation of slurry flow in CMP process. The result indicates that the combination of sinusoidal groove and skewed pad is the most optimal shape among the twenty candidates. Useful information can be obtained in velocity, pressure, stress, concentration of particles and particles trajectories, etc.

An Experimental Study on the Greenery Ratio of coffee Shop based the Computer Graphics (컴퓨터 그랙픽을 이용한 커피숍 녹시율에 관한 시뮬레이션 실험연구)

  • 안옥희
    • Korean Institute of Interior Design Journal
    • /
    • no.17
    • /
    • pp.60-64
    • /
    • 1998
  • The results of simulation on greenery ratio using CG are as follows: arrangement type of optimal condition and greenery ratio were summarized as below as dispersion type and 5% ratio greenery for 20 pairs of assessment items and these assessment items were classified into 5 factors as a result of factor analysis,. These factors were Harmony Animation Atmosphere texture Peculiarity. Verification results of factors differences according to each condition can be. there was no apparent difference among factors in accordance with gender, In case of arrangement type dispersion type was higher than concentration type in all factors. Based on the above results dispersion type was assessed higher than concentration type the most suitable condition of Harmony Factor was 5% dispersion type Animation Factor was 5% dispersion type Animation Factor was 7% dispersion type Atmosphere Factor was 10% dispersion type Texture Factor was 5% concentration type and $\ulcorner$Peculiarity Factor$\lrcorner$was 7% concentration type.

  • PDF

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF

A Study on the Machining of Die Profile Using the CAM System (상용 CAM시스템을 활용한 금형 형상부(CORE/CAVITY)의 가공에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • The purpose of the present paper is to investigate about the machining of profile (core/cavity) of mold die using the commercial CAM system. Recently the requirement of the light weight and high performance of automobiles has Increased. The weight of the automobile is very important in the viewpoint of the fuel and traveling performance. The optimal design technique, material technique, the process design for parts and specially, die machining technique need to be developed for increasing productivity and reducing production time of the automobile parts. In this study, the effect of machining condition on precision of die profile is investigated by experimental observation and analysis. The results will be reflected for development of the precision die of the automobile.

  • PDF

An Evaluation of Factors on the Influence Roundness in Turning Based on the Taguchi Method (다구찌 방법에 기초한 선삭에서 진원도에 영향을 미치는 인자에 관한 평가)

  • Kang, Shin-Gil;Lee, Chang-Ho;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study is to improve the roundness of CNC turning so that helps the operator to choose the right turning conditions to produce a product with the given parameters. This paper focuses on determining the optimal levels of machining factors for circular shaft with CNC turning. For this purpose, the optimization of factors is performed based on experimental design method. A design and analysis of experiments are conducted to study the effects of these factors on the roundness by using the SIN ratio, analysis of ANOVA, and F-test. Factors, namely, fixed pressure, wall thickness, depth of cut, and feed rate are optimized with consideration of the roundness. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is Al6061 and the machining method is dry cutting.

Design method for the 2DOF electromagnetic vibrational energy harvester

  • Park, Shi-Baek;Jang, Seon-Jun
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω.

Design and Separation Characteristics of an Explosive Bolt (모서리 분리형 폭발볼트 설계인자 및 분리특성)

  • 김동진;이응조
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.243-248
    • /
    • 2001
  • The present work is described the design factors and separation mechanism of ridge-cut explosive bolt in order to optimize the stage separation characteristics. Characteristics of test samples would differ depend on the detonating devices, the shape and size of bolt body, the amount of loading explosives, and the confinment conditions of bolt. Based on the results from these experimental factors, it appears to optimal condition of ridge-cut explosive that the amount of loading explosive seems to be near 110mg of RDX, the height of loading explosive is 3.5mm, the thickness of bolt is 3.9mm, and the degree of ridge is approximately $120^{\circ}$

  • PDF

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.