• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.032 seconds

Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals (혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

Optimal Design of a Mini-Loader Based on the Design of Experiments (실험계획법을 이용한 미니로더의 최적설계)

  • Kwon, Ki-Beom;Shin, Dea-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.693-699
    • /
    • 2011
  • In this study, a hydraulic system of a mini-loader is modeled, and the model is validated by comparing the simulation results to the experimental results. A load force acting on the structure of the mini-loader is obtained from the simulation of the hydraulic system, and the structural analysis via finite element method is performed using the obtained load force to evaluate the structural safety of the loader. For the mainframe that requires additional strengthening according to the structural analysis, the optimum design parameters are proposed using the design of experiments to improve strength without additional mass.

Bi-directional Buck-Boost Converter Controller Design Method for ESS using Matlab SISO TOOL (Matlab SISO TOOL을 이용한 ESS용 양방향 벅-부스트 컨버터 제어기 설계 기법)

  • ParK, Hae-Chan;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.457-464
    • /
    • 2016
  • This study proposes a bi-directional buck-boost converter controller design method for ESS using the MATLAB SISO tool. The conventional two-loop controller design is based on a continuous S-domain model that designs each controller independently. The demerit of the conventional method is that optimal performance is not easily achieved and extensive trials and errors are required because two-loop systems interact with one another. Using the MATLAB SISO tool based on the design method proposed in this work overcomes the disadvantages of the conventional method. In the proposed method, the SISO tool can select the location of the poles and zeroes of the open loop system, thereby facilitating the effective design of a high-performance controller. The design sequence is detailed systematically, and the performance of the method is verified with a computer simulation and 10 kW experimental system.

전력기술 관리법 소개

  • 박종윤
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.1
    • /
    • pp.34-36
    • /
    • 1997
  • In this paper, we introduce the design method using CAE(Computer Aided Engineering) which is profitable in the compatibility and standardization of the developed product and the reduction of construction time and price to develop and design a machine equipment. Particularly, we select the standard model to design or develop from the large machinery to the super precision one, extract the peculiar characters of the model by the close analysis of the physical and technical part, can predict the previous result of experimental characteristics on objective dimensions through the analogical mathematical analysis, and can induce the design model demanded by user investigating optimal data in advance. We present the analogical algorithms and process method of design factors and restriction factors in the systematization design with computer. Then we analyze step functions for each systematization equipment and induce the process of technical data with actuator model.

  • PDF

A Study on Forging Process about Preform of Articulated Piston for Diesel Engine (디젤 엔진용 분절 피스톤의 예비성형체 단조 공정 연구)

  • 염성호;이병섭;노병래;서기석;홍성인
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.635-641
    • /
    • 2004
  • Today the specific outputs of modern supercharger DI diesel engine for passenger cars reach values exceeding 50kw/1. By development of the articulated piston, specific output of up to 70kw/1 are sought. In doing so, peak cylinder pressure increases from the current 14-16MPa to 18-20MPa. The Articulated piston was composed Al cast skirt part and steel forged crown part. We have the target fer the design of forging process and die of the steel forged crown part. The design parameters of the forging process of the piston were obtained by the forging industry experiences and our experimental data and analysis result of finite element simulation. Especially, the design parameter of preform in blocker die was decided by finite element simulation using numerical package DEFROM3D. And also we can verify the design parameter by conducting visio-plasticity test using plasticine material. When we compared the results of analysis and experiment, a metal flow and load curve showed good agreement. Through this research, we could design optimal preform shape of articulated piston for this supercharged DI diesel engine.

Experimental Study of Air-cooled Condensation in Slightly Inclined Circular Tube (경사진 원형관에서의 공냉응축에 관한 실험적 연구)

  • Kim, Dong Eok;Kwon, Tae-Soon;Park, Hyun-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, the experimental investigation of air-cooled condensation in slightly inclined circular tubes with and without fins has been conducted. In order to assess the effects of the essential parameters, variable air velocities and steam mass flow rates were given to the test section. The heat transfer performance of air-cooled condensation were dominantly affected by the air velocity, however, the increase of the steam mass flow rate gave relatively weaker effects to total heat transfer capability. And in the experimental cases with the finned tube, the total heat transfer rate of the finned tube was significantly larger than that of the flat tube. From those results, it can be confirmed that the most important parameter for air-cooled condensation heat transfer is the convective heat transfer characteristics of air. Therefore, for the well-designed long-term cooling passive safety system, the consideration of the optimal design of the fin geometry is needed, and the experimental and numerical validations of the heat transfer capability of the finned tube would be required.

Development of finite element analysis program and simplified formulas of bellows and shape optimization (벨로우즈에 대한 유한요소해석 프로그램 및 간편식의 개발과 형상최적설계)

  • Koh, Byung-Kab;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1195-1208
    • /
    • 1997
  • Bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axial symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis is developed to analyze various bellows. The validity of the developed program is verified by the experimental results for axial and lateral stiffness. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. The shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function by weighting factors. The stiffness, strength and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is selected to solve the problem. The results are compared to existing bellows, and the characteristics of bellows is investigated through optimal design process. The optimized shape of bellows is expected to give quite a good guideline to practical design.

Relationship between Ionic Conductivity and Composition of Li2O-ZrO2-SiO2 Glasses Determined from Mixture Design (혼합물계획법에 의한 Li2O-ZrO2-SiO2 유리의 이온전도도와 조성의 관계)

  • Kang, Eun-Tae;Kim, Myoung-Joong;Kim, Jae-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.219-223
    • /
    • 2007
  • The ionic conductivity of $Li_2O-ZrO_2-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for the activation energy and the ionic conductivity are as follows: $Q(kJ/moi)=54.8565x_1+144.825x_2+133.846x_3-170.908x_1x_3-334.338x_2x_3$ $log{\sigma}(300K)=-5.00245x_1-1.17876x_2-15.5173x_3+17.4522x_1x_3$. The electrical properties are very sensitive to the ratio of $Li_2O/SiO_2$. The effect of $ZrO_2$ is less than that of this ratio but $ZrO_2$ component attributes to the reduction of the activation energy. The optimal composition for best ionic conduction based on these fitted models is $55Li_2O{\cdot}10ZrO_2{\cdot}35SiO_2$. Its activation energy and ionic conductivity at 300 K are 46.98 kJ/mol and $1.08{\times}10^{-5}{\Omega}^{-1}{\cdot}cm^{-1}$, respectively.

Optimization of Voice Coil Motors for a Small Guided Missile Fin Actuator (소형 유도무기 날개 작동기용 보이스 코일 모터의 최적 설계)

  • Lee, Choong Hee;Kim, Gwang Tae;Lee, Byung Ho;Cho, Young Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2019
  • In this study, optimal design of direct-drive VCMs (Voice Coil Motor) for a missile fin actuator is carried out. The torque performance and the characteristics of the VCM are predicted by commercial electromagnetic analysis software, ANSYS Maxwell. The optimal design is obtained at the minimum and maximum actuating angles where the aerodynamic load acting on the fin is the largest in the operating range. The critical variables of the actuator is designed and the RSM (Response Surface Method) is used for the optimization. The response surface model consists of second-order functions and its experimental points are selected by a central composite design. This design is widely used for fitting a second-order response surface. The adjustment regression coefficients is computed for adequacy checking of the response surface model. Finally, the torque values obtained by the RSM and the ANSYS Maxwell are shown in good agreement.

New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery (LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발)

  • Suh Tae-suk
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.95-100
    • /
    • 1992
  • Since LINAC-based stereotactic radiosurgery uses multiple noncoplanar arcs, three-dimensional dose evaluation and many beam parameters, a lengthy computation time is required to optimize even the simplest case by a trial and error. The basic approach presented in this paper is to show promising methods using an experimental optimization and an analytic optimization The purpose of this paper is not to describe the detailed methods, but introduce briefly, proceeding research done currently or in near future. A more detailed description will be shown in ongoing published papers. Experimental optimization is based on two approaches. One is shaping the target volumes through the use of multiple isocenters determined from dose experience and testing. The other method is conformal therapy using a beam's eye view technique and field shaping. The analytic approach is to adapt computer-aided design optimization in finding optimum irradiation parameters automatically.

  • PDF