• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.032 seconds

A Study on the Optimal Conditions by Means of Experimental Design for Preparation of Starch/PVA Blends 2. Multiplex Mixture Optimal Method (실험계획법을 이용한 전분/PVA 블렌드 제조 최적조건 탐구에 관한 연구 2, 다중혼합물 최적법)

  • Hong, young-Keun;Lee, Myoung-Seok
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • Optimal conditions for preparation of starch/PVA blends were investigated with the consideration of factors that may influence mechanical properties of the blends. Multiplex mixture optimal method as a statistical method were performed and then tensile strength, strain at break, Young's modulus and tear strength of films of the blends were measured to determine the optimal conditions for preparation. The mechanical properties needed for the degradable agricultural mulch were the target of this experiment. Results showed that although the strain at break was a little insufficient, the other properties were very close to the target. This means that the mechanical properties of the film from this blend as a whole are very compatible with those of the reference mulch.

An Optimal Process Design U sing a Robust Desirability Function(RDF) Model to Improve a Process/Product Quality on a Pharmaceutical Manufacturing Process (제약공정에서 공정 및 제품의 품질향상을 위해 강건 호감도 함수 모형을 이용한 최적공정설계)

  • Park, Kyung-Jin;Shin, Sang-Mun;Jeong, Hea-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Quality design methodologies have received constituent attention from a number of researchers and practitioners for more than twenty years. Specially, the quality design for drug products must be carefully considered because of the hazards involved in the pharmaceutical industry. Conventional pharmaceutical formulation design problems with mixture experiments have been typically studied under the assumption of an unconstrained experimental region with a single quality characteristic. However, real-world pharmaceutical industrial situations have many physical limitations. We are often faced with multiple quality characteristics with constrained experimental regions. ln order to address these issues, the main objective of this paper is to propose a robust desirability function (RDF) model using a desirability function (DF) and mean square error (MSE) to simultaneously consider a number of multiple quality characteristics. This paper then present L-pseudocomponents and U-pseudocomponents to handle physical constraints. Finally, a numerical example shows that the proposed RDF can efficiently be applied to a pharmaceutical process design.

A Case Study of Enhancing Flame Retardancy of Mixture Material (혼합물 소재의 난연성 향상을 위한 실험연구 사례)

  • Byun, Jai-Hyun;Jung, Chun-Sik;Kim, Donghak;Park, Kyu-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.631-639
    • /
    • 2019
  • Purpose: In this paper we present a case study of applying quick and easy experimental design approach to develop a Halogen free flame retardant material for cellular phone charger cable. Methods: We employ sequential experimentation of mixture design, verification design, and factorial design. A quick and easy approach is adopted based on data investigation and graphical method instead of strict statistical analysis, which helped enhancing smooth communication with the engineers and speeding up the development process. Results: Flame retardant material in pellet type produced from the optimal condition is transported to the customer and tested, to pass the customer retardancy criteria. Conclusion: The quick and easy experimental design approach is considered to be useful in this case study.

A Controller Design for the Prediction of Optimal Heating Load (최적 난방부하 예측 제어기 설계)

  • 정기철;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.441-446
    • /
    • 2000
  • This paper presents an approach for the prediction of optimal heating load using a diagonal recurrent neural networks(DRNN) and data base system of outdoor temperature. In the DRNN, a dynamic backpropagation(DBP) with delta-bar-delta teaming method is used to train an optimal heating load identifier. And the data base system is utilized for outdoor temperature prediction. Compared to other kinds of methods, the proposed method gives better prediction performance of heating load. Also a hardware for the controller is developed using a microprocessor. The experimental results show that prediction enhancement for heating load can be achieved with the proposed method regardless of the its inherent nonlinearity and large time constant.

  • PDF

On the Deformation Analysis of the Brake Tube-End for Automobiles (자동차용 브레이크 튜브 관단부의 성형해석)

  • Han, K.T.;Park, J.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

[ $H_{\infty}$ ] Optimal Control for Single-Rod Hydraulic Servo-System with DSP (DSP를 이용한 편로드 유압서보시스템의 $H_{\infty}$ 최적제어)

  • Jung, Gyu-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • Due to the high power to weight ratio and fast response under heavy load, the hydraulic systems are still applied to the development of many industrial facilities such as heavy duty construction vehicles, aerospace/military weapon actuating systems and motion simulators. Unlike the other actuators, single-rod hydraulic cylinder exhibits a lot different dynamic characteristics between the extending and retracting stroke because of the difference in pressure acting areas. In this research, in order to overcome this nonlinear feature, $H_{\infty}$ optimal controller was designed and implemented with DSP board that was specifically developed for the experiment. From the experimental result, we could confirm that the overall performance of single-rod hydraulic servo system is similar with the results as we expected in the design stage.

  • PDF

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

Operating Range Expansion of a Closed-Loop Stepping Motor by Optimal Lead Angle Control (초적 Lead Angle 제어에 의한 폐루프 스테핑 전동기의 운전영역 확대)

  • 우광준;이종언;이현창
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.3
    • /
    • pp.80-87
    • /
    • 1995
  • In this paper, we design the microcontroller-based optimal lead angle control system on the basis of the presented maximum average torque formula of the permanent-type stepping motor with respect to the inductance. We confirm that optimal lead angle enlarges the operating range twice as much and increases the torque over all of the operating range in the case of presented formula as well as experimental results.

  • PDF

Design and Field Test of an Optimal Power Control Algorithm for Base Stations in Long Term Evolution Networks

  • Zeng, Yuan;Xu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5328-5346
    • /
    • 2016
  • An optimal power control algorithm based on convex optimization is proposed for base stations in long term evolution networks. An objective function was formulated to maximize the proportional fairness of the networks. The optimal value of the objective function was obtained using convex optimization and distributed methods based on the path loss model between the base station and users. Field tests on live networks were conducted to evaluate the performance of the proposed algorithm. The experimental results verified that, in a multi-cell multi-user scenario, the proposed algorithm increases system throughputs, proportional fairness, and energy efficiency by 9, 1.31 and 20.2 %, respectively, compared to the conventional fixed power allocation method.

Design of the Optimal Grinding Process Conditions Using Artificial Intelligent Algorithm (인공지능 알고리즘을 이용한 최적 연삭 공정 설계)

  • Choi, Jeong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.590-597
    • /
    • 2009
  • The final quality of the workpiece is affected by the grinding process that has been conducted in final manufacturing stage. However the quality-satisfaction of ground workpiece depends on the skill of an expert in this process. Therefore, the process models of grinding have been developed to predict the states according to grinding process. In this paper, in order to find the optimized grinding condition to reduce the manufacturing expense and to meet requirements of ground workpiece optimization algorithm using E.S.(Evolutionary Strategy) is proposed. The proposed algorithm has been employed to find the optimal grinding and dressing condition using the grinding process models and nonlinear grinding constraints. The optimized results also presents the guide line of grinding process. The effectiveness of the proposed algorithm is verified through the experimental results.

  • PDF