• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.027 seconds

An experimental study on the ground movement around a square pipe by its penetration for trenchless construction in sandy ground (사각형 강관을 이용한 비개착 시공에 따른 지반거동의 분석: 모래지반에 대한 모형 토조실험)

  • Choi, Soon-Wook;Park, Young-Taek;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Ki Taek;Baek, Yong Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.485-501
    • /
    • 2012
  • This study aims to experimentally investigate ground settlement and ground movement around the square pipe by its penetration in sandy ground. A series of laboratory model tests were carried out with a small-scale auger equipment for penetration of a square pipe as well as a newly designed test box with a sand raining equipment. From the experiments, it is shown that a square pipe induces ground movement evenly around it in a low overburden condition. However, as the overburden becomes higher, ground movement by a square pipe is concentrated mainly above it. Especially, horizontal strain above the square pipe was mainly dominated by its penetration. In addition, sand surface movement is the smallest in case of the dimensionless penetration rate equal to 0.2. When its penetration rate of the square pipe is fixed, the rotation speed of auger controls surface movement whether it is settlement or heaving. Therefore, the selection of an optimal dimensionless rate for the square pipe is a key design factor to minimize ground settlement in a trenchless construction.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Effects of varying CO2, Nutrient and Light Irradiance Levels on the Growth of Ulva australis at Germling, Juvenile, and Adult Stages (해수의 CO2와 영양염 농도 및 조도가 구멍갈파래(Ulva australis) 배아, 유엽과 성체의 생장에 미치는 영향)

  • Jeon, Da Vine;Na, Yeon Ju;Yu, Ok Hwan;Choi, Han Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.96-103
    • /
    • 2015
  • The effects of $CO_2$ concentration, nutrient levels, and irradiance on the growth of germlings and juveniles, and on the photosynthesis of adults were examined in a green tide alga, Ulva australis. We used a factorial experimental design with two $CO_2$ concentrations (380 and 750 ppm), two nutrient levels (control and PES medium), and two irradiance levels (50 and $100{\mu}mol$ photons $m^{-2}s^{-1}$). Germlings grew best ($664.15{\pm}61.45{\mu}m$ in length) under conditions of 750 ppm, PES, and $100{\mu}mol$ photons $m^{-2}s^{-1}$ after 10 days in culture. Relative growth rates (RGR) of the juveniles were greatest (4.41% $day^{-1}$) under conditions of 750 ppm, PES, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Photosynthetic efficiency ($F_v/F_m$) of the adult discs was $0.73{\pm}0.05$ before the experiment and reached a maximum ($0.83{\pm}0.01$) under conditions of 750 ppm, control, and $50{\mu}mol$ photons $m^{-2}s^{-1}$ after 5 days in culture. Growth (germlings and juveniles) and photosynthesis (adult discs) of Ulva australis increased when $CO_2$ levels were 750 ppm. Additionally, the optimal irradiance for growth and photosynthesis differed among stages, wherein germlings grew best at $100{\mu}mol$ photons $m^{-2}s^{-1}$, juveniles grew best at $50{\mu}mol$ photons $m^{-2}s^{-1}$, and adults photosynthesized most at $50{\mu}mol$ photons $m^{-2}s^{-1}$. The performance of Ulva australis at all examined life stages was enhanced under the PES nutrient treatment. In conclusion, the physiological responses of U. australis to varying $CO_2$, nutrient, and irradiance levels differed slightly among life stages. However, growth and photosynthesis always increased with elevated $CO_2$ and nutrient concentrations. These results indicate that U. australis green tide blooms might occur more frequently in coastal areas if $CO_2$ and nutrient concentrations increase.

Optimization of bio-$H_{2}$ production from acid pretreated microalgal biomass (미세조류로부터 바이오 수소 생산을 위한 산(acid) 전처리의 최적화)

  • Yun, Yeo-Myeong;Jung, Kyung-Won;Kim, Dong-Hoon;Oh, You-Kwan;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.78-86
    • /
    • 2012
  • In this study, dark fermentative hydrogen production (DFHP) from acid pretreated microalgal biomass was optimized with via statistical experimental design. Acid concentration and reaction time were varied from 0.1 to 3% (v/w) and 10 to 60 min with substrate concentration of 76 g dry cell weight (dcw)/L and initial pH of 7.4, respectively. During the fermentation, pH was not controlled. The optimal condition was found that at $H_{2}$ yield reached to 37.3 mL $H_{2}/g$ dcw at 1.2% HCl and 48 min. Through regression analysis, it was found that $H_{2}$ yield was well fitted by a quadratic polynomial equation ($R^{2}$=0.95). HCl concentration was the most significant factor influencing DFHP. The results of ANOVA verify that HCl concentration was the most significant factor influencing DFHP.

Optimization of microwave-assisted extraction process of Hordeum vulgare L. by response surface methodology (반응표면분석법을 이용한 새싹보리 마이크로웨이브 추출공정의 최적화)

  • Lee, Jae-Jun;Park, Dae-Hee;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.949-956
    • /
    • 2017
  • This study attempted to find optimum extract range of active ingredient for barley sprouts (Hordeum vulgare L.). Extracts from Hordeum vulgare L. were made by microwave extraction method and total polyphenol content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity (DPPH) were measured with extract of Hordeum vulgare L.. Response surface methodology (RSM) was applied to a extraction process, and central composite design (CCD) was also used for this process to examine the optimum condition. Independent variables ($X_n$) are concentration of ethanol ($X_1$: 0, 25, 50, 75, 100%), microwave power ($X_2$: 60, 120, 180, 240, 300 W), extraction time ($X_3$: 4, 8, 12, 16, 20 min). Dependent variables ($Y_n$) are TPC ($Y_1$), TFC ($Y_2$), DPPH radical scavenging ($Y_3$). It is formed by sixteen conditions to extract. The $R^2$ value of dependent variables is ranged from 0.90 to 0.97 (p<0.05). Experiments values within the optimal range (40% of ethanol concentration, 120 W of microwave power, 18 min of extraction time) were 3.74 mg GAE/g (TPC), 3.00 mg RE/g (TFC), 35.43% (DPPH), respectively. Under the optimized conditions, predicted value showed no significant difference comparing with the experimental values.

Modeling of Liquid Hold-up in Fixed-bed Reactor for Fischer-Tropsch Synthesis (고정층 Fischer-Tropsch 반응기의 액상 왁스 정체 현상 모델링)

  • Park, Chansaem;Jung, Ikhwan;Park, Seongho;Na, Jonggeol;Kshetrimayum, Krishnadash;Han, Chonghun;Lee, Jong Yeol;Jung, Jongtae
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.63-67
    • /
    • 2014
  • Fischer-Tropsch synthesis mainly produces a wax which is a viscous liquid for long carbon chain. When a catalytic fixed-bed reactor is used for Fischer-Tropsch synthesis, the wax generated on a catalyst surface can keep adsorbing on the catalyst surface. This liquid hold-up causes significant pressure drop and clogging problems through the reactor. Thus, the model for liquid hold-up is required to design the size of reactor and catalyst particles. In this study, the liquid hold-up model considering structural and operational conditions was proposed based on empirical equations for convective mass transfer between the syngas flow and the wax-adsorbed catalyst. The developed model was validated by comparing with the experimental data from Knochen's work (2010). The influence of reactor length and coross section on the wax hold-up in reactor were analyzed and the optimal reactor size were proposed.

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery (차량용 12-V 납축전지의 충·방전 모델링)

  • Kim, Ui Seong;Jeon, Sehoon;Jeon, Wonjin;Shin, Chee Burm;Chung, Seung Myun;Kim, Sung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.242-248
    • /
    • 2007
  • For an optimal design of automotive electric system, it is important to have a reliable modeling tool to predict the charge-discharge behaviors of the automotive battery. In this work, a two-dimensional modeling was carried out to predict the charge-discharge behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experimental data of the charge-discharge behaviors of a lead-acid battery. The discharge behaviors were measured with three different discharge rates of C/5, C/10, and C/20 at operating temperature of $25^{\circ}C$. The batteries were charged with constant current of 30A until the charging voltage reached to a predetermined value of 14.24 V and then the charging voltage was kept constant. The discharge and charge curves from the measurements and modeling were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, the porosity of the electrodes, and the current density within the electrodes as well as the acid concentration can be predicted as a function of charge and discharge time.

Development of Rashguard Swimwear Size System and Pattern for Middle-aged Women in Breast Cancer Patients

  • Han, Hyun-Sook;Sohn, Boo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.155-164
    • /
    • 2020
  • In this paper, we proposed the dimensional system and pattern of middle-aged women's rashguard swimwear for breast cancer patients. First, a survey of 37 breast cancer patients was conducted to determine the preferred swimsuit design for breast cancer patients. According to a survey of breast cancer patients, a rashguard swimwear with a low-exposure chest was designed. It has a pocket shape in which the cap is easy to insert and the cap is fixed. Second, we developed a dimensional system for swimsuits for breast cancer patients. Using direct measurement data from Size Korea for 1,625 women aged 30 to 69, 17-sizes for breast cancer patient's swimsuits were set through cross-analysis of major dimensions, with a coverage rate of 74.3%. It also extracted a standard size of bust circ. 90cm, hip circ. 95cm, and trunk circ. 150cm. Third, we developed a pattern for the central size of the swimsuit for breast cancer patients. For this purpose, we first produced the first central size pattern, and then completed the pattern after modifying it through the second and third wearing experiments. Experimental suits were produced at each pattern-making stage to evaluate wearing fit and motion suitability. Finally, the reduction rate of each dimension item for optimal pattern production was obtained, and the lashguard swimwear pattern for breast cancer patients was developed.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

Optimization of the Blanching and Dewatering Processes to Stabilize Quality of Boiled Frozen Ark Shell Scapharca subcrenata for Use as a Non-thermally Prepared Seasoned Seafood Products (비열처리 조미수산가공품용 냉동 자숙 새고막(Scapharca subcrenata)의 품질안정성을 위한 블랜칭 및 탈수공정 최적화)

  • Kim, Ye jin;Park, Si Hyeong;Park, Ji Hoon;Jo, Hye-Jeong;Hwang, Ji-Young;Song, Ho-Su;Choi, Jung-Mi;Kim, Jin Soo;Lee, Jung-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.827-835
    • /
    • 2022
  • Commercial boiled frozen ark shell Scapharca subcrenata (BFAS) is generally used as a seasoned seafood products. One problem facing the industry is that quality decreases during thawing. This study investigated ways to improve quality and shelf-stability of BFAS for use as a non-thermally prepared seasoned seafood products. The Viable bacteria were detected in BFAS after thawing under running water, but were not detected after blanching for over 2 min at 95±5℃. Blanching and dewatering times were optimized by response surface methodology (RSM) to reduce the initial number of bacteria and improve BFAS texture. Experimental design was deemed appropriate because no significant difference (P>0.05) was observed between predicted and actual moisture content, hardness, and overall acceptance values. Optimal blanching and dewatering times were 210 s and 80 s, respectively. Optimized blanching and dewatering processes can significantly improve safety and BAFS qualities including texture. These results indicate that BFAS demand as a staple for home meal replacements can be increased by application of optimized blanching and dewatering processes, especially in Korean seafood processing companies where running water thawing is common.