• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.036 seconds

An Optimization of Dynamic Elements for Eddy Current Braking System of High Speed Train (고속전철의 와전류 제동장치 동적 최적화 연구)

  • Park, Chan-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.345-350
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for prediction of the dynamic behavior of an eddy current braking system. Five design variables and five performance index are considered for optimization through D-optimal experimental design in this paper. Also model center is used to search the optimal point for sum of performance index with variational matric method.

  • PDF

The Effects of Design Parameter to Interrupt Optimally for High Voltage CL Fuse (고압한류퓨즈의 최적 차단을 위한 설계변수의 영향)

  • Lee, Se-Hyeon;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.185-191
    • /
    • 1999
  • The fuse used in the high voltage distribution line often fails due to the active ionization caused by the strong electric field at fuse terminal. To suppress the ionization at the high voltage and high capacity current limiting fuse, the particle size and compactness of silica sand, the design, length, notch number and material of element, the diameter and length of fuse body must be considered carefully. However, these are not many proper which is treated with the inherent interrupting characteristics from many parameters at present. Because of these reasons, time and effort are needed to develop the new type fuse by the fuse designers in relation with the inherent characteristics from each of parameters. In this paper we choose 7 parameters with weight value based on study and experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to experimentation and analyzed the characteristics of arcing period. In addition, we proposed the experimental method to extract the optimal design parameters with minimal effort as related the mutual effect from each of the parameters.

  • PDF

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.119-124
    • /
    • 2007
  • The most difficult and time-intensive issue in the successful implementation of genetic algorithms is to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to be processed in each job, and the number of machines are considered as noise factors in generating various job shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer simulation, and the optimal parameter setting is presented which consists of a combination of the level of each design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those obtained by an experiment with full factorial designs.

Performance Analysis on the Design Variables of a Turbo Blower (터보블로어 설계인자의 성능특성 연구)

  • Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.47-51
    • /
    • 2011
  • This paper describes the shape optimization of a blower impeller used for a refuse collection system. Two design variables, which are used to define the blade angles of an impeller, are introduced to increase the blower performance. A blower efficiency is selected as an object function, and the shape optimization of the blade angles is performed by a response surface method (RSM). Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, blower efficiency for the optimal blade angles is successfully increased up to 3.6% compared with that of reference at the design flow rate. Detailed flow field inside the turbo blower is also analyzed and discussed.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Synthesis Conditions and Rheological Characteristics of Aluminum Phosphate (인산 알루미늄의 합성조건과 유동학적 특성)

  • 신화우;안세민;정동훈;강태욱;이광표
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.319-325
    • /
    • 1991
  • Aluminum phosphate gel was synthesized by reacting aluminum sulfate as a soluble aluminum salt to tribasic sodium phosphate in this study. The optimal synthesis conditions based on the yield of product were investigated by applying Box-Wilson experimental design. It was found that optimal synthesis conditions were as follows: Reaction temperature; $61~71^{\circ}C$, concentration of two reactants; 12.27~13.83%, concentration ratio of two reactants; [AI$_{2}$(SO$_{4}$)$_{3}$]/[Na$_{3}$PO$_{4}$]= 0.5, reaction time; 10.9~12.1 minutes, drying temperature of product; $60~72^{\circ}C$. Aluminum phosphate gel prepared by the optimal synthesis conditions was suspended with four types of natural and synthetic gums at the concentration of 0.375~1.5wv%. Their Theological properties of aluminum phosphate gels were examined with Haake-Rotovisco RV 20 rotational viscometer. It showed that the higher concentration of suspending agents and lower temperature, the higher viscosity. Aluminum phosphate gel suspended by pectin and agar showed plastic flow with rheopexy, and their gels suspended by sodium alginate and sod. CMC showed plastic flow with thixotropy.

  • PDF

Building a Product Design of Innovative Strategy for Creating Enterprise Development

  • Liao, Shih-Chung
    • The Journal of Industrial Distribution & Business
    • /
    • v.5 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Purpose - Nowadays, the innovative design concept is being implemented in product design. In order to satisfy market trends and the demand for quality, designers should employ customer satisfaction questionnaires and analyze them with various experimental processes. Research design, data, and methodology - These methodologies would help designers have a better understanding of their customers and judge the market size and clustering validity, by diverse product strategies, for dealing with the rapid change prevailing in the market today. Results - By considering the innovative design with regard to telephones as an experimental case, the study investigates and demonstrates how the product can benefit from market-oriented and customized management concepts, when creative design ability is utilized for developing the product. Conclusions - Along with the benefit of having an innovative product value, the product can stimulate progress inthe development of the enterprise management, which has emerged as the main issue in the area of social and economic development in every developed country.

Optimal Tuning of a Ballscrew Driven Biaxial Servo System (외란관측기를 이용한 볼스크류 구동 2축 서보계의 최적튜닝)

  • Shin, Dong-Soo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.589-597
    • /
    • 2011
  • In this paper, optimal tuning of a cross-coupled controller linked with the feedforward controller and the disturbance observer is studied to improve contouring and tracking accuracy as well as robustness against disturbance. Previously developed integrated design and optimal tuning methods are applied for developing the robust tuning method. Strict mathematical modeling of the multivariable system is formulated as a state-space equation. Identification processes of the servomechanism are conducted for mechanical servo models. An optimal tuning problem to minimize both the contour error and settling time is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servo control system. Constraints such as relative stability, robust stability and overshoot, etc. are considered for the optimization. To verify the effectiveness of the proposed optimal tuning procedure, linear and circular motion experiments are performed on the xy-table. Experimental results confirm the control performance and robustness despite the variation of parameters of the mechanical subsystems.

Optimization of L-shaped Corner Dowel Joint in Modified Poplar using Finite Element Analysis with Taguchi Method

  • Ke, Qing;Zhang, Fan;Zhang, Yachi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.204-217
    • /
    • 2016
  • Modified poplar has emerged as a potential raw material for furniture production. Lack of specific modified poplar strength information; however, restricts applications in the furniture industry especially as related to strength in corner-joints. Optimization of strength in L-shaped corner dowel modified poplar joints under compression loads utilizing finite element analysis (FEA) by Taguchi method with the focus of this study. Four experiment factors (i.e., Structure Style, Tenon Length, Tenon Diameter, and Tenon Gap), each at three levels, were conducted by adopting a $L_9-3^4$ Taguchi orthodoxy array (OA) to determine the optimal combination of factors and levels for the von Mises stress utilizing ANSYS software. Results of Signal-to-Noise ratio (S/N) analysis and the analysis of variance (ANOVA) revealed the optimal L-shaped corner dowel joint in modified poplar is $45^{\circ}$ Bevel Butt in structure style, 24 mm in tenon length, 6 mm in tenon diameter, and 20 mm in tenon gap. Tenon length and tenon gap are determined to be significant design factors for affecting von Mises Stress. Confirmation tests with optimal levels and experimental test indicated the predicted optimal condition is comparable to the actual experimental optimal condition.

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.