• Title/Summary/Keyword: optimal experimental design

Search Result 1,325, Processing Time 0.025 seconds

Vibration Modeling and Optimal Design of Differential Electromagnetic Transducer for Implantable Middle Ear Hearing Devices using the FEA (FEA를 이용한 이식형 인공중이용 차동전자 트랜스듀서의 진동 모델링과 최적 설계)

  • Kim Min-Kyu;Lim Hyung-Gyu;Han Chan-Ho;Song Byung-Seop;Park Il-Yong;Cho Jin-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.379-386
    • /
    • 2005
  • Among various kinds of hearing aids which have been developed so far. the conventional air conduction hearing aids have some problems such as the acoustic distortion, an howling effect due to acoustic feedback. Another type of hearing aid. the cochlear implant system can be applied to the profound imparied person. However. it shows the disadvantage that there is no possibility of recovery of the acoustic organ such as ossicle. On the other hand. the implantable middle ear heaving device directly vibratos the ossicular chain and has better sound qualify. good cosmetics for appearance. and wide frequency responses so that it can overcome the defects or the conventional hearing aids. In this paper, a mathematical modeling and a momentum equation derivation of the DET has been performed. For the optimization of the structure dimension generating maximal vibrating force of the DET. the computer simulation using a finite element analysis (FEA) software has been performed. Also. the vibrating transducer has been designed to make the frequency characteristics or the transducer be similar to those of the normal middle ear. Through the experimental results, the measured vibration characteristics of the DET has been evaluated to verify the performance for the application to implantable middle ear hearing devices.

Warpage of Flexible OLED under High Temperature Reliability Test (고온 신뢰성 시험에서 발생된 플렉서블 OLED의 휨 변형)

  • Lee, Mi-Kyoung;Suh, Il-Woong;Jung, Hoon-Sun;Lee, Jung-Hoon;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • Flexible organic light-emitting diode (OLED) devices consist of multi-stacked thin films or layers comprising organic and inorganic materials. Due to thermal coefficient mismatch of the multi-layer films, warpage of the flexible OLED is generated during high temperature process of each layer. This warpage will create the critical issues for next production process, consequently lowering the production yield and reliability of the flexible OLED. In this study, we investigate the warpage behavior of the flexible OLED for each bonding process step of the multi-layer films using the experimental and numerical analysis. It is found that the polarizer film and barrier film show significant impact on warpage of flexible OLED, while the impact of the OCA film on warpage is negligible. The material that has the most dominant impact on the warpage is a plastic cover. In order to minimize the warpage of the flexible OLED, we estimate the optimal material properties of the plastic cover using design of experiment. It is found that the warpage of the flexible OLED is reduced to less than 1 mm using a cover plastic of optimized properties which are the elastic modulus of 4.2 GPa and thermal expansion coefficient of $20ppm/^{\circ}C$.

Optimization of Microwave-assisted Extraction Conditions for Total Catechin and Electron Donating Ability of Grape Seed Extracts (포도씨 추출물의 총 카테킨 함량과 전자공여능에 대한 마이크로웨이브 추출조건 최적화)

  • Lee, Eun-Jin;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.840-846
    • /
    • 2008
  • Microwave-assisted extraction (MAE) of grape seeds was performed under the different conditions based on a central composite design for independent variables of microwave power ($0{\sim}120\;W$), ethanol concentration ($0{\sim}100%$) and extraction time ($1{\sim}5\;min$). Response surface methodology (RSM) was used to predict the optimum extraction conditions for three dependent variables in grape seed extracts: total yield, total catechin and electron donating ability. Determination coefficients ($R^2$) of regression equations for the three dependent variables were higher than 0.9 (p < 0.01). The optimal MAE conditions to yield the maximum value of total catechin (434.16 mg%) were 122.76 W microwave power, 42.88% ethanol and 4.67 min extraction time. The superimposed contour maps for maximizing the three dependent variables indicated that the MAE condition ranges were 75150 W, 4060% ethanol and 3.55.0 min. The predicted values at the optimized conditions (6.72% total yield, 408.65 mg% total catechin, and 83.33% electron donation ability) were similar to the experimental values. The optimized MAE (112.5 W, 50% EtOH, 4.2 min) was more efficient than the conventional solvent extraction using 80% EtOH, $60^{\circ}C$ for 3h and 150 rpm.

Hot-Carrier Degradation of NMOSFET (NMOSFET의 Hot-Carrier 열화현상)

  • Baek, Jong-Mu;Kim, Young-Choon;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3626-3631
    • /
    • 2009
  • This study has provided some of the first experimental results of NMOSFET hot-carrier degradation for the analog circuit application. After hot-carrier stress under the whole range of gate voltage, the degradation of NMOSFET characteristics is measured in saturation region. In addition to interface states, the evidences of hole and electron traps are found near drain depending on the biased gate voltage, which is believed to the cause for the variation of the transconductance($g_m$) and the output conductance($g_{ds}$). And it is found that hole trap is a dominant mechanism of device degradation in a low-gate voltage saturation region, The parameter degradation is sensitive to the channel length of devices. As the channel length is shortened, the influence of hole trap on the channel conductance is increased. Because the magnitude of $g_m$ and $g_{ds}$ are increased or decreased depending on analog operation conditions and analog device structures, careful transistor design including the level of the biased gate voltage and the channel length is therefore required for optimal voltage gain ($A_V=g_m/g_{ds}$) in analog circuit.

Statistical Optimization of Culture Conditions for the Production of Aphicidal Metabolites of Beauveria bassiana Bb08 (Beauveria bassiana Bb08의 살충성 물질 생산을 위한 배양조건의 통계적 최적화)

  • Go, Eunsu;Lim, Younghoon;Jeong, Hyeongchul;Choi, Jaepil;Park, Inseo;Kim, Jeong Jun;Lee, Dong-Jin;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • For the maximal production of aphicidal metabolites produced by the Beauveria bassiana Bb08, statistical methods such as the Box-Behnken experimental design and response surface methodology were used. The fungal culture filtrate was sprayed towards 3-star aphids and the mortality was examined. After the statistical analysis of the aphid mortality, the optimal culture conditions were found to be a culture temperature of $26.2^{\circ}C$, medium pH 5.9, flask shaking speed of 209.0 rpm, and culture time of 5.9 days. The expected mortality on days 4, 5, and 6 after spraying the filtrate on to the aphids were 76.8%, 84.9%, and 89.4%, respectively. All 4 factors of the culture conditions significantly affected the production of the aphicidal metabolites, and the order of significance was temperature, pH, culture time and shaking speed.

Optimization of Roasting Conditions for Coffee Beans by Response Surface Methodology (반응표면분석법에 의한 원두커피의 최적 배전조건 설정)

  • Park, Sung-Jin;Moon, Sung-Won;Lee, Jin;Kim, Eun-Jung;Kang, Byung-Sun
    • Food Science and Preservation
    • /
    • v.18 no.2
    • /
    • pp.178-183
    • /
    • 2011
  • The consumer awareness concerning coffee beverages has increased in Korea. The objective of this study was to optimize the roasting conditions of coffee bean for consumer's attribute. The optimal roasting conditions for Colombian coffee beans were analyzed by using a central composite design with a quadratic polynomial model by response surface methodology (RSM). The experimental conditions for coffee bean roasting were $194.82^{\circ}C{\sim}250.00^{\circ}C$ and 7.93~22.07 minutes. The responses of sensory attributes. physicochemical and physical properties were analyzed with RSM. The width. length and height of green beans increased when the beans were roasted. The higher degree of roasting gave the higher pH and solid contents but the lower total acidity and total phenolic compounds. In sensory tests, the roasting temperature and time had a significant effect on the flavor score. The optimum roasting condition of Colombian coffee bean predicted for maximizing the length, width, solid contents, total phenolic compounds and flavor score were 20 minutes at $225^{\circ}C$ by RSM.

Optimization of White Pan Bread Preparation via Addition of Purple Barley Flour and Olive Oil by Response Surface Methodology (자맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1813-1822
    • /
    • 2012
  • The purpose of this study was to determine the optimal mixing conditions of two different amounts of purple barley flour ($X_1$), and olive oil ($X_2$) in baking white pan bread. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points including 2 replicates. The more purple barley flour added, the more weight, yellowness (b-value), hardness, gumminess, and chewiness increased; but the more volume, specific loaf volume, lightness (L-value), and springiness decreased. The greater the amount of olive oil added, the more hardness, cohesiveness, gumminess, and chewiness increased; but the more yellowness (b-value) and springiness decreased. The physical and mechanical properties were affected more by the amount of purple barley flour than by the amount of olive oil. Sensory properties except flavor were more affected by the amount of purple barley flour than by the amount of olive oil.

Optimization of Alkali Extraction for Preparing Oat Protein Concentrates from Oat Groat by Response Surface Methodology (반응표면분석법을 이용한 쌀귀리 단백질의 알칼리 추출 공정 최적화)

  • Jeong, Yong-Seon;Kim, Jeong-Won;Lee, Eui-Seok;Gil, Na-Young;Kim, San-Seong;Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1462-1466
    • /
    • 2014
  • In this study, an attempt was made to produce oat protein concentrates from defatted oat groat by alkali extraction. Independent variables formulated by D-optimal design were NaOH concentration (X1, 0.005~0.06 N) for extraction and precipitation pH (X2, pH 4.0~6.0), and the dependent variable was extraction yield (Y1, %). Experimental results were analyzed by response surface methodology to determine optimized extraction conditions. Extraction yield increased both with an increase in NaOH concentration of the extraction solution and when approaching a precipitation pH of 4.9, and NaOH concentrations were a major influencing parameter. Solubility of oat protein concentrates showed a minimum value (i.e., 0.1%) at pH 5 and increased substantially at pH values in the range of ${\leq}$ pH 3 or ${\geq}$ pH 7, reaching a maximum value at pH 11 (i.e., 76%). Regression equation coincided well with the results of the experiment. Optimized extraction conditions to maximize extraction yield were 0.06 N NaOH (X1) for extraction and pH 4.7 (X2) for precipitation.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Optimization of White Pan Bread Preparation by Addition of Black Barley Flour and Olive Oil using Response Surface Methodology (흑맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.180-190
    • /
    • 2013
  • The purpose of this study was to determine the optimal amount of 2 ingredients, i.e., black barley flour ($X_1$), and olive oil ($X_2$), for the production of white pan bread from black barley flour. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points, including 2 replicates for black barley flour and olive oil. Significant differences were found in the results of the physical and mechanical properties analysis of each sample, including weight (p<0.05), volume (p<0.01), specific loaf volume (p<0.01), color L (p<0.01), color a (p<0.001), color b (p<0.05), hardness (p<0.001), springiness (p<0.01), cohesiveness (p<0.01), gumminess (p<0.001) and chewiness (p<0.05). Significant differences in the sensory measurements were observed in color (p<0.01), appearance (p<0.01), texture (p<0.05), taste (p<0.05) and overall quality (p<0.05). The optimum formulation, which was calculated using the numerical and graphical methods, was determined to be 18.00% black barley flour and 1.80% olive oil.