• 제목/요약/키워드: optimal energy harvesting

검색결과 94건 처리시간 0.024초

동일 채널 간섭을 겪는 중계기의 전력 수집 방안 (The Method Energy Harvesting of Relay Undergo Co-Channel Interference)

  • 김태욱;;;공형윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.812-814
    • /
    • 2015
  • In this Paper, we proposed optimization of system performance, power splitting protocols applied to relay in the cooperative communication undergo co-channel interference. When relay adjust power distribution factors undergo co-channel interference, it is possible to optimize and maximize the channel capacity of the receiver. Because of energy haversting, interfence transfer to new power source. If we found optimal power levels, to solve inability in system, and to increase the efficiency of the network.

  • PDF

Full-Duplex Operations in Wireless Powered Communication Networks

  • Ju, Hyungsik;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.794-802
    • /
    • 2017
  • In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H-AP) and multiple user equipment (UE), all of which operate in full-duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD-WPCN-FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self-interference cancellation capability at the H-AP. Compared to the WPCN with FD H-AP and half-duplex (HD) UE, FD-WPCN-FD achieved an 18% throughput gain. In addition, the throughput of FD-WPCN-FD was shown to be 25% greater than that of WPCN in which an H-AP and UE operated in HD.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

최적의 전력 분배 방안이 적용된 중계기 프로토콜 (Relay Protocol applied to Optimal Power Allocation)

  • 김태욱;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.93-97
    • /
    • 2015
  • 본 논문에서는 동일 채널 간섭을 겪는 중계기에 최적화된 분할 요인이 적용된 전력 분할 프로토콜을 활용하여 시스템의 성능을 최적화하는 방안을 제안하였다. 전력 분할 프로토콜이 적용된 중계 노드에서는 전력 분배 요인을 최적화하여 간섭 요인을 전력원으로 사용, 송신단의 신호를 최적의 상태로 복호한다. 따라서 제안된 방안을 협력 네트워크의 중계기에 적용할 경우, 전력 분할 프로토콜의 분할 인자에 따른 전력 수급이 가능하며 최적화된 채널 용량을 통해 네트워크의 효율성을 증가시킬 수 있다. 전력 분배 인자에 대한 아웃티지 확률 및 채널 용량 성능을 분석함으로서 시스템의 성능을 평가한다.

최적의 전력 분배 방안이 적용된 복호 후 전송 프로토콜 (Decode and Forward Protocol applied to Optimal Power Allocation)

  • 김태욱;공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.87-92
    • /
    • 2015
  • 본 논문에서는 복호 후 전송 프로토콜이 적용된 중계기에 전력 분배 프로토콜을 적용하여 수집되는 전력량을 최대화함과 동시에 수신단의 수신 불량 문제를 해결할 수 있는 전력 분배 인자 ${\alpha}$를 선택하는 방안을 제안한다. 레일리 페이딩과 복호 후 전송 프로토콜의 영향이 적용된 모의실험 파라미터를 통해 무선 기기가 배치된 실제 네트워크의 상황을 고려하며, 최적의 전력 분배 인자 ${\alpha}$의 값을 네트워크에 적용할 경우 배치되어 있는 무선 기기의 채널 용량 및 수신 성능, 네트워크의 효율성을 최적화 시킬 수 있다. 전체적인 시스템의 단대단 아웃티지 확률, 채널 용량, 비트 오류율에 대한 성능을 몬테-카를로 실험을 통해 분석함으로서 시스템의 성능을 평가한다.

하수고도처리용 미세조류의 최적회수를 위한 전기응집기술 적용에 있어 전류의 영향 (Effects of electric current on electrocoagulation for optimal harvesting of microalgae for advanced wastewater treatment)

  • 이석민;주성진;최경진;장산;황선진
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.473-478
    • /
    • 2014
  • Microalgae is known as one alternative energy source of the fossil fuel with the small size of $5{\sim}50{\mu}m$ and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of $Al^{3+}$. In the cathode electrode, the water electrolysis generated $OH^-$ which combine with $Al^{3+}$ to produce $Al(OH)_3$. This hydroxide acts as a coagulant to harvest microalgae. Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD. The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes

  • Wang, Hongyan;Tang, Lihua;Shan, Xiaobiao;Xie, Tao;Yang, Yaowen
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.247-266
    • /
    • 2014
  • Conventional cantilevered piezoelectric energy harvesters (PEHs) are usually fabricated with continuous electrode configuration (CEC), which suffers from the electrical cancellation at higher vibration modes. Though previous research pointed out that the segmented electrode configuration (SEC) can address this issue, a comprehensive evaluation of the PEH with SEC has yet been reported. With the consideration of delivering power to a common load, the AC outputs from all segmented electrode pairs should be rectified to DC outputs separately. In such case, theoretical formulation for power estimation becomes challenging. This paper proposes a method based on equivalent circuit model (ECM) and circuit simulation to evaluate the performance of the PEH with SEC. First, the parameters of the multi-mode ECM are identified from theoretical analysis. The ECM is then established in SPICE software and validated by the theoretical model and finite element method (FEM) with resistive loads. Subsequently, the optimal performances with SEC and CEC are compared considering the practical DC interface circuit. A comprehensive evaluation of the advantageous performance with SEC is provided for the first time. The results demonstrate the feasibility of using SEC as a simple and effective means to improve the performance of a cantilevered PEH at a higher mode.

Bulk Micromachined Vibration Driven Electromagnetic Energy Harvesters for Self-sustainable Wireless Sensor Node Applications

  • Bang, Dong-Hyun;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1320-1327
    • /
    • 2013
  • In this paper, two different electromagnetic energy harvesters using bulk micromachined silicon spiral springs and Polydimethylsiloxane (PDMS) packaging technique have been fabricated, characterized, and compared to generate electrical energy from ultra-low ambient vibrations under 0.3g. The proposed energy harvesters were comprised of a highly miniaturized Neodymium Iron Boron (NdFeB) magnet, silicon spiral spring, multi-turned copper coil, and PDMS housing in order to improve the electrical output powers and reduce their sizes/volumes. When an external vibration moves directly the magnet mounted as a seismic mass at the center of the spiral spring, the mechanical energy of the moving mass is transformed to electrical energy through the 183 turns of solenoid copper coils. The silicon spiral springs were applied to generate high electrical output power by maximizing the deflection of the movable mass at the low level vibrations. The fabricated energy harvesters using these two different spiral springs exhibited the resonant frequencies of 36Hz and 63Hz and the optimal load resistances of $99{\Omega}$ and $55{\Omega}$, respectively. In particular, the energy harvester using the spiral spring with two links exhibited much better linearity characteristics than the one with four links. It generated $29.02{\mu}W$ of output power and 107.3mV of load voltage at the vibration acceleration of 0.3g. It also exhibited power density and normalized power density of $48.37{\mu}W{\cdot}cm-3$ and $537.41{\mu}W{\cdot}cm-3{\cdot}g-2$, respectively. The total volume of the fabricated energy harvesters was $1cm{\times}1cm{\times}0.6cm$ (height).

다중벽 탄소나노튜브 혼입 알칼리 활성 슬래그 복합재료의 열전 에너지 수확 성능평가 (Evaluation on the thermoelectric energy harvesting performance of multi-walled carbon nanotube-embedded alkali activated slag composites)

  • 박형민;양범주
    • 도시과학
    • /
    • 제9권1호
    • /
    • pp.1-6
    • /
    • 2020
  • The thermoelectric characteristics of alkali activated slag composites containing multi-walled carbon nanotubes (MWCNT) was investigated in the present study. Three different MWCNT contents and exposed temperatures were considered, and their thermoelectric-related properties and internal structures were analyzed. It was found that the alkali activated slag composite with MWCNT 2.0 wt.% and the exposed temperature of 150℃ were the optimal condition to obtain the highest Seebeck coefficient and power factor. Based on the feasibility study, the extended size thermoelectric module with 130 elements was fabricated, and tested the electricity production capacity. Consequently, the present thermoelectric module produced 30.83 ㎼ of electricity at ∆T=178.4℃.