본 연구는 기술력평가에 근거해서 중소기업 부실예측 가능성을 사전에 예측할 수 있는 최적 판별 모형을 개발 제안하였다. 판별모형에 포함될 설명변수는 요인분석과 판별모형의 단계별 선택방법에 의하여 선정되었다. 분석결과 선형판별모형이 로지스틱판별모형보다 임계확률 관점에서 적절한 것으로 나타났다. 최적 선형판별모형의 분류 정분류율은 70.4%, 분류 예측력은 67.5%로 나타났다. 최적 선형판별모형의 활용도를 높이기 위해서 확실 범주와 유보범주를 구분할 수 있는 경계값을 설정하였다. 분석결과를 활용하면 기술금융 취급기관은 부실위험 평가와 더불어 기술금융 신청기업의 순위를 부여할 때 유용하게 사용할 수 있을 것으로 기대된다.
The problem considered here is to find the optimal discriminant analysis method in growth curve model. It has been studied how to find correct prior probability for the effective classification in discriminant analysis. We use the balanced condition to calculate prior probability. From the informative simulation study, new classification rule for the growth curve model is suggested. The suggested classification rule has better classification result than the other previously suggested method in terms of error rate criterion.
본 연구는 보험 회사의 파산 예측을 위하여 신경회로망이 사용되는데 이를 최적화하기 위하여 유전자 알고리즘이 사용된다. 유전자 알고리즘은 최적의 네트워크 구조와 매개변수들을 제시해 준다. 유전자 알고리즘에 의해 설계된 신경회로망은 파산 예측을 함에 있어 discriminant analysis, logistic regression, ID3, CART 등과 비교되는데 가장 좋은 성능을 보여준다.
The Auto Regressive Parameter Estimation and Pattern Classification of EKG Signal for Automatic Diagnosis. This paper presents the results from pattern discriminant analysis of an AR (auto regressive) model parameter group, which represents the HRV (heart rate variability) that is being considered as time series data. HRV data was extracted using the correct R-point of the EKG wave that was A/D converted from the I/O port both by hardware and software functions. Data number (N) and optimal (P), which were used for analysis, were determined by using Burg's maximum entropy method and Akaike's Information Criteria test. The representative values were extracted from the distribution of the results. In turn, these values were used as the index for determining the range o( pattern discriminant analysis. By carrying out pattern discriminant analysis, the performance of clustering was checked, creating the text pattern, where the clustering was optimum. The analysis results showed first that the HRV data were considered sufficient to ensure the stationarity of the data; next, that the patern discrimimant analysis was able to discriminate even though the optimal order of each syndrome was dissimilar.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권3호
/
pp.794-814
/
2012
We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.
Bankruptcy prediction has drawn a lot of research interests in previous literature, and recent studies have shown that machine learning techniques achieved better performance than traditional statistical ones. This paper employs a relatively new machine learning technique, support vector machines (SVMs). to bankruptcy prediction problem in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, we use grid search technique using 5-fold cross-validation to find out the optimal values of the parameters of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM. we compare its performance with multiple discriminant analysis (MDA), logistic regression analysis (Logit), and three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the other methods.
Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.
본 연구는 시내버스 운전자의 실제 운행기록 정보를 토대로 사고발생 가능성을 내포한 운전자를 판단할 수 있는 모형개발을 목적으로 하였다. 본 연구를 위하여 사고발생 운전자 및 사고 미발생 운전자의 실제 운행기록 정보에서 교통사고와 관련한 유의변수를 도출하는 한편, 판별분석(Discriminant Analysis) 및 로지스틱회귀분석(Logistic Regression Analysis)을 적용하여 개발된 분류모형에 대한 모형간 정확도를 비교하였다. 또한, 개발된 모형을 다른 운전자들의 운행기록자료에 적용하여 모형의 정확도를 검증하였다. 사고발생 가능성을 내포한 운전자 분류모형을 개발한 결과 감속도($X_{deceleration}$) 및 우측방향 가속도($Y_{right}$)가 동시에 작용할 때 이 변수가 사고발생 운전자 분류의 최적 요인변수로 도출되었으며, 판별분석에 의한 예측모형은 최대 62.8%, 로지스틱회귀분석에 의한 예측모형은 최대 76.7%의 비율로 사고 발생 운전자 분류가 가능한 것으로 나타났다. 또한, 모형 예측력에 대한 검증결과 84.1%의 적중률을 보이는 것으로 나타났다.
1. Objectives: This study is about a development of Sasang constitutional classification algorithm using facial information. 2. Methods: We analysed the datum of middle aged (20~48) women collected by multi-center researchers in 2007. And this study analysed the data of the measurement of the face by 3D-AFRA (3-Dimensional Automatic Face Recognition Apparatus) and the items of impression by SDQ. We used multiple comparison, exploratory discriminant analysis and clinical decision to select optimal 3D facial variables which will be input in discriminant analysis model. And we used univariate F values and stepwise discriminant function analysis to choose best impression variables. 3. Results and Conclusions: In this study, derived discriminant function's explanation power was 39% in female group. Diagnostic accuracy rate was 66.0% in female group. And in test sample, Sasang constitutional diagnostic accuracy rate was 56.9%. In this process we could help improve the objectification of Sasang constitution diagnosis.
Purpose - Going concern is one of fundamental concepts in accounting and auditing and sometimes the assessment of a company's going concern status that is a tough process. Various going concern prediction models' based on statistical and data mining methods help auditors and stakeholders suggested in the previous literature. Research design - This paper employs a data mining approach to prediction of going concern status of Iranian firms listed in Tehran Stock Exchange using Particle Swarm Optimization. To reach this goal, at the first step, we used the stepwise discriminant analysis it is selected the final variables from among of 42 variables and in the second stage; we applied a grid-search technique using 10-fold cross-validation to find out the optimal model. Results - The empirical tests show that the particle swarm optimization (PSO) model reached 99.92% and 99.28% accuracy rates for training and holdout data. Conclusions - The authors conclude that PSO model is applicable for prediction going concern of Iranian listed companies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.