• 제목/요약/키워드: optimal combination forecasts

검색결과 8건 처리시간 0.024초

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • 제5권2호
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측 (Hierarchical time series forecasting with an application to traffic accident counts)

  • 이주은;성병찬
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.181-193
    • /
    • 2017
  • 본 논문에서는 계층적 시계열 자료 분석을 위한 대표적인 두 가지 방법인 상향식과 최적조합 예측법을 소개한다. 이러한 예측법은 계층적 시계열을 구성하는 모든 계열을 예측해야 하는 독립적 예측과 달리, 임의의 조정 과정이 없이 하위 계층 계열의 예측값의 합은 항상 상위 계층의 예측값과 일치하게 된다. 또한, 독립적 예측과 비교하여 예측력을 향상시킨다. 계층적 예측법의 효율성을 살펴보기 위하여 국내 16개 시도별 남녀 교통사고 발생건수 시계열 자료를 예측하였다. 이를 통하여 교통사고 발생건수에 대한 각 계층의 예측에서 계층적 방법과 독립적 방법의 차이점 및 우수성을 비교하였다.

가계동향조사 지출부문 시계열 연계 방안에 관한 연구 (A study on time series linkage in the Household Income and Expenditure Survey)

  • 김시현;성병찬;최영근;여인권
    • 응용통계연구
    • /
    • 제35권4호
    • /
    • pp.553-568
    • /
    • 2022
  • 가계동향조사는 가구에 대한 가계수지 실태를 파악하여 국민 소득·소비 수준과 그 변화의 측정 및 분석 등을 목적으로 하는 통계청의 대표적인 조사이다. 최근 여러 기관들에서 2017년과 2018년의 가계동향 지출부문에서 발생한 시계열 단절에 대한 문제를 인식하고, 이 기간에 대한 시계열 연계를 위한 관련 연구를 진행하고 있다. 본 연구에서는 2016년까지의 가계동향 조사 시계열 특성을 파악하고, 이를 반영하여 2017년과 2018년의 지출액에 대한 시계열을 연계하는 예측값을 도출한다. 본 연구에서는 각 지출 항목들의 시계열적 특성을 골고루 반영하는 동시에 특정 예측 모형의 영향을 줄이기 위하여 총 8개의 회귀모형, 시계열모형, 머신러닝 기법을 합성하여 사용하였다. 특히 본 연구의 주목할 만한 특징은, Top-down 또는 Bottom-up 방식이 아닌, 정보의 손실없이 가계동향조사의 계층 구조를 반영할 수 있는 optimal combination 기법을 사용하여 예측력을 향상시켰다는 점이다. 2017년부터 2019년 자료에 대한 가계동향 지출 부문의 연계 분석 결과, 본 연구가 제안하는 연계 방식이 시계열 단절성 회복 및 예측력 향상에 기여하며, 또한 optimal combination 기법에 의한 계층 조정 후의 예측값이 조사자료에 보다 근접한 결과를 보여줌을 확인하였다.

A Baltic Dry Index Prediction using Deep Learning Models

  • Bae, Sung-Hoon;Lee, Gunwoo;Park, Keun-Sik
    • Journal of Korea Trade
    • /
    • 제25권4호
    • /
    • pp.17-36
    • /
    • 2021
  • Purpose - This study provides useful information to stakeholders by forecasting the tramp shipping market, which is a completely competitive market and has a huge fluctuation in freight rates due to low barriers to entry. Moreover, this study provides the most effective parameters for Baltic Dry Index (BDI) prediction and an optimal model by analyzing and comparing deep learning models such as the artificial neural network (ANN), recurrent neural network (RNN), and long short-term memory (LSTM). Design/methodology - This study uses various data models based on big data. The deep learning models considered are specialized for time series models. This study includes three perspectives to verify useful models in time series data by comparing prediction accuracy according to the selection of external variables and comparison between models. Findings - The BDI research reflecting the latest trends since 2015, using weekly data from 1995 to 2019 (25 years), is employed in this study. Additionally, we tried finding the best combination of BDI forecasts through the input of external factors such as supply, demand, raw materials, and economic aspects. Moreover, the combination of various unpredictable external variables and the fundamentals of supply and demand have sought to increase BDI prediction accuracy. Originality/value - Unlike previous studies, BDI forecasts reflect the latest stabilizing trends since 2015. Additionally, we look at the variation of the model's predictive accuracy according to the input of statistically validated variables. Moreover, we want to find the optimal model that minimizes the error value according to the parameter adjustment in the ANN model. Thus, this study helps future shipping stakeholders make decisions through BDI forecasts.

Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 (Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based)

  • 권현한;민영미
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1147-1151
    • /
    • 2009
  • In this study, we address the problem of producing probability forecasts of summer seasonal rainfall, on the basis of Hindcast experiments from a ensemble of GCMs(cwb, gcps, gdaps, metri, msc_gem, msc_gm2, msc_gm3, msc_sef and ncep). An advanced Hierarchical Bayesian weighting scheme is developed and used to combine nine GCMs seasonal hindcast ensembles. Hindcast period is 23 years from 1981 to 2003. The simplest approach for combining GCM forecasts is to weight each model equally, and this approach is referred to as pooled ensemble. This study proposes a more complex approach which weights the models spatially and seasonally based on past model performance for rainfall. The Bayesian approach to multi-model combination of GCMs determines the relative weights of each GCM with climatology as the prior. The weights are chosen to maximize the likelihood score of the posterior probabilities. The individual GCM ensembles, simple poolings of three and six models, and the optimally combined multimodel ensemble are compared.

  • PDF

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

식중독 발생 건수에 대한 계층 시계열 예측 (Forecasting hierarchical time series for foodborne disease outbreaks)

  • 여인권
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.499 -508
    • /
    • 2024
  • 이 연구에서는 식중독 발생건수를 원인물질별로 나눈 자료와 합한 자료를 별개로 분석하여 예측값을 유도한 후 계층구조를 만족하도록 하는 계층 시계열 예측에 대해 알아본다. 원인물질별 식중독 방생건수는 영과잉 포아송 회귀모형과 음이항 회귀모형으로 분석하고 합한 식중독 발생건수 포아송 회귀모형과 음이항 회귀모형으로 분석한다. 계층 시계열 예측을 위해 최적결합 중 하나인 Wickramasuriya 등 (2019)의 MinT 추정이 사용되었다. 계층조정 과정에서 발생한 음의 예측값은 0으로 수정하고 나머지 최하위 변수에 가중치를 곱해 계층구조를 만족시킨다. 실증분석 결과를 보면 원인물질별 예측에서는 계층조정을 한 결과와 하지 않은 결과에 차이가 거의 없었으나 주요, 기타 및 전체에 대한 예측에서는 계층조정 한 결과가 대체로 우수한 것으로 나타났다. 중요한 것은 계층조정을 하지 않으면 최하위 변수의 예측빈도가 주요나 기타의 예측빈도 보다 큰 경우도 발생하지만 제안된 방법을 적용하면 계층구조를 이루는 예측값을 얻을 수 있다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.