In this study, the PIC design method with machine learning that automatically assigning different stacking sequences according to loading types was applied bumper beam. The input value and labels of the training data for applying machine learning were defined as coordinates and loading types of reference elements that are part of the total elements, respectively. In order to compare the 2D and 3D implementation method, which are methods of representing coordinate value, training data were generated, and machine learning models were trained with each method. The 2D implementation method is divided FE model into each face and generating learning data and training machine learning models accordingly. The 3D implementation method is training one machine learning model by generating training data from the entire finite element model. The hyperparameter were tuned to optimal values through the Bayesian algorithm, and the k-NN classification method showed the highest prediction rate and AUC-ROC among the tuned models. The 3D implementation method revealed higher performance than the 2D implementation method. The loading type data predicted through the machine learning model were mapped to the finite element model and comparatively verified through FE analysis. It was found that 3D implementation PIC bumper beam was superior to 2D implementation and uni-stacking sequence composite bumper.
Journal of Korean Academy of Nursing Administration
/
v.5
no.3
/
pp.513-524
/
1999
The shortage of nursing personnel was become one of the most serious problems in operating pediatric oncology nursing unit which was the first pediatric oncology nursing unit in Korea. The purpose of this study was to estimate the optimal number of nursing personnel by calculating nursing care hours. The subjects were 13 staff nurses and inpatients of pediatric oncology nursing unit at Seoul National University Hospital during the period of May 20, 1996, to June 2, 1996. The number of nurses' duty was 132, the number of patients treated was 1288 for these 2 weeks. The tools used for this study were pediatric patient classification indexes and direct & indirect care indexes. Each nurse measured the time that they spent for their activities by self record under the supervision of their nurse manager. The method used to calculate the number of nursing personnel was multiplication of the average number of nursing care hours per patient per day with the number of patients. Percentage, average, t-test, F-test were used for data analysis. The results of this study were as follows : 1) The distribution of patient class : Class I & II none, Class III 86.8%. Class IV 12.9% 2) Direct nursing care hours for a patient per shift according to patient classification: Class III : 27.64 minutes, Class IV : 54.64 minutes The average direct nursing service hours for a patient per shift(3 shift) was 31.54 minutes(94.62 m/day). The average indirect nursing service hours for each patient per duty(3 shift) is 21.3 minutes (63. 91 m/day). 3) The average nursing hours for a patient per duty was 52.80 minutes(2.64h/day). 4) The group of administering medications in direct care activities showed the highest percentage (38.9%). Checking vital signs among observation took the most time am.ong each direct care activity (6.88 minutes for a patient per duty). 5) Charting took the most time of each indirect care activity(52.53 minutes/ duty/nurse). 6) The average personal time per duty is 29.40 minutes, which 'was below 30 minutes of this hospital regulations. 7) The average nursing hours that a nurse provided for a duty was 8.60 hours, which meant that a nurse worked 1.10 hours overtime. 8) Standardizing to a 33 bed to a unit, 17 nurses were needed at the present nursing level.
In order to extract and analyze complex features of the behavior of animals in response to external stimuli such as toxic chemicals, we implemented an adaptive computational method to characterize changes in the behavior of chironomids in response to treatment with the insecticide, diazinon. In this paper, we propose an energy minimization model to extract the features of response behavior of chironomids under toxic treatment, which is applied on the image of velocity vectors. It is based on the improved active contour model and the variations of the energy functional, which are produced by the evolving active contour. The movement tracks of individual chironomid larvae were continuously measured in 0.25 second intervals during the survey period of 4 days before and after the treatment. Velocity on each sample track at 0.25 second intervals was collected in 15-20 minute periods and was subsequently checked to effectively reveal behavioral states of the specimens tested. Active contour was formed around each collection of velocities to gradually evolve to find the optimal boundaries of velocity collections through processes of energy minimization. The active contour which is improved by T. Chan and L. Vese is used in this paper. The energy minimization model effectively revealed characteristic patterns of behavior for the treatment versus no treatment, and identified changes in behavioral states .is the time progressed.
Lee, Subum;Roh, Sung Woo;Jeon, Sang Ryong;Park, Jin Hoon;Kim, Kyoung-Tae;Lee, Young-Seok;Cho, Dae-Chul
Journal of Korean Neurosurgical Society
/
v.64
no.5
/
pp.791-798
/
2021
Objective : The period of mechanical ventilator (MV)-dependent respiratory failure after cervical spinal cord injury (CSCI) varies from patient to patient. This study aimed to identify predictors of MV at hospital discharge (MVDC) due to prolonged respiratory failure among patients with MV after CSCI. Methods : Two hundred forty-three patients with CSCI were admitted to our institution between May 2006 and April 2018. Their medical records and radiographic data were retrospectively reviewed. Level and completeness of injury were defined according to the American Spinal Injury Association (ASIA) standards. Respiratory failure was defined as the requirement for definitive airway and assistance of MV. We also evaluated magnetic resonance imaging characteristics of the cervical spine. These characteristics included : maximum canal compromise (MCC); intramedullary hematoma or cord transection; and integrity of the disco-ligamentous complex for assessment of the Subaxial Cervical Spine Injury Classification (SLIC) scoring. The inclusion criteria were patients with CSCI who underwent decompression surgery within 48 hours after trauma with respiratory failure during hospital stay. Patients with Glasgow coma scale 12 or lower, major fatal trauma of vital organs, or stroke caused by vertebral artery injury were excluded from the study. Results : Out of 243 patients with CSCI, 30 required MV during their hospital stay, and 27 met the inclusion criteria. Among them, 48.1% (13/27) of patients had MVDC with greater than 30 days MV or death caused by aspiration pneumonia. In total, 51.9% (14/27) of patients could be weaned from MV during 30 days or less of hospital stay (MV days : MVDC 38.23±20.79 vs. MV weaning, 13.57±8.40; p<0.001). Vital signs at hospital arrival, smoking, the American Society of Anesthesiologists classification, Associated injury with Injury Severity Score, SLIC score, and length of cord edema did not differ between the MVDC and MV weaning groups. The ASIA impairment scale, level of injury within C3 to C6, and MCC significantly affected MVDC. The MCC significantly correlated with MVDC, and the optimal cutoff value was 51.40%, with 76.9% sensitivity and 78.6% specificity. In multivariate logistic regression analysis, MCC >51.4% was a significant risk factor for MVDC (odds ratio, 7.574; p=0.039). Conclusion : As a method of predicting which patients would be able to undergo weaning from MV early, the MCC is a valid factor. If the MCC exceeds 51.4%, prognosis of respiratory function becomes poor and the probability of MVDC is increased.
Even in recent years, treatment of first-aid patients is still often delayed due to a shortage of medical resources in marginalized areas. Research on automating the analysis of medical data to solve the problems of inaccessibility for medical services and shortage of medical personnel is ongoing. Computer vision-based medical inspection automation requires a lot of cost in data collection and labeling for training purposes. These problems stand out in the works of classifying lesion that are rare, or pathological features and pathogenesis that are difficult to clearly define visually. Anomaly detection is attracting as a method that can significantly reduce the cost of data collection by adopting an unsupervised learning strategy. In this paper, we propose methods for detecting abnormal images on chest X-RAY images as follows based on existing anomaly detection techniques. (1) Normalize the brightness range of medical images resampled as optimal resolution. (2) Some feature vectors with high representative power are selected in set of patch features extracted as intermediate-level from lesion-free images. (3) Measure the difference from the feature vectors of lesion-free data selected based on the nearest neighbor search algorithm. The proposed system can simultaneously perform anomaly classification and localization for each image. In this paper, the anomaly detection performance of the proposed system for chest X-RAY images of PA projection is measured and presented by detailed conditions. We demonstrate effect of anomaly detection for medical images by showing 0.705 classification AUROC for random subset extracted from the PadChest dataset. The proposed system can be usefully used to improve the clinical diagnosis workflow of medical institutions, and can effectively support early diagnosis in medically poor area.
This paper proposes a novel algorithm for the efficient classification and annotation of medical images, especially X-ray images. Since X-ray images have a bright foreground against a dark background, we need to extract the different visual descriptors compare with general nature images. In this paper, a Color Structure Descriptor (CSD) based on Harris Corner Detector is only extracted from salient points, and an Edge Histogram Descriptor (EHD) used for a textual feature of image. These two feature vectors are then applied to a multi-class Support Vector Machine (SVM), respectively, to classify images into one of 20 categories. Finally, an image has the Annotation Code Array based on the pre-defined hierarchical relations of categories and priority code order, which is given the several optimal keywords by the Annotation Code Array. Our experiments show that our annotation results have better annotation performance when compared to other method.
The characteristics of the demographics in Korea as it gets older are the increase of Elderly Women and continuous progress in urbanization. In this study, body shapes are classified as standard, obese, and tiny according to the previous studies based on the body shape characteristics and the body measurement of the Elderly Women. Based on the classification, we developed prototype of the panty for the Elderly Women to provide basic materials for the quality enhancement of the clothing of the increasing Elderly Women. The followings are the result of the study. 1. To categorize the body shapes of the Elderly Women focusing on the lower half, we grouped the target subjects using the nested approach by the average standard deviation and the factor analysis minimal diffusion method. Accordingly, type 1 and 2 had 36 members respectively and type 3 had 43 members. In this study, two Elderly Women subjects with standard body shape falling under the type 1 were selected as the subjects. 2. In the second trial evaluation for the prototype panty for the Elderly Women 32 items for appearance test and 3 items for functional test were evaluated. The scores in leg, sideline and hip were shown high and the balance between the parts was maintained very well. In the functional test, the panty used to be too tight for the leg curve but in the second trial it was improved, too. In each item, the second trial test showed better score than the first trial test. Conclusively, the most optimal panty prototype for the Elderly Women was proposed according to the trial test result.
Korea is now entering into aging society next to Japan in Asia, which is considered as unusual in the semi-developed countries. More than 50 year-old consumer market is anticipated to grow to 28.7% of the total in 2010 from 20.4% in 2000. In particular, the silver market is estimated to be formed in full range in 2010 when the generation born in 50s and 60s after the Korean War start to retire. In this study, body shapes are classified as standard, obese, and tiny according to the previous studies based on the body shape characteristics and the body measurement of the Elderly Women. Based on the classification, we developed pattern of the panty for the obese Elderly Women to provide basic materials for the quality enhancement of the clothing of the increasing Elderly Women. The followings are the result of the study 1. To categorize the body shapes of the Elderly Women focusing on the lower half, we grouped the target subjects using the nested approach by the average standard deviation and the factor analysis minimal diffusion method. Accordingly, type 1 and 2 had 36 members respectively and type 3 had 43 members. In this study, two Elderly Women subjects with standard body shape falling under the type 1 were selected as the subjects. 2. In the second trial evaluation for the panty pattern for the Elderly Women 32 items for appearance test and 3 items for functional test were evaluated. The scores in leg, sideline and hip were shown high and the balance between the parts was maintained very well. In the functional test, the panty used to be too tight for the leg curve but in the second trial it was improved, too. In each item, the second trial test showed better score than the first trial test. Conclusively, the most optimal panty prototype for the Elderly Women was proposed according to the trial test result.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.5
/
pp.423-432
/
2018
Surface water mapping has been widely used in various remote sensing applications. Water indices have been commonly used to distinguish water bodies from land; however, determining the optimal threshold and discriminating water bodies from similar objects such as shadows and snow is difficult. Deep learning algorithms have greatly advanced image segmentation and classification. In particular, FCN (Fully Convolutional Network) is state-of-the-art in per-pixel image segmentation and are used in most benchmarks such as PASCAL VOC2012 and Microsoft COCO (Common Objects in Context). However, these data sets are designed for daily scenarios and a few studies have conducted on applications of FCN using large scale remotely sensed data set. This paper aims to fine-tune the pre-trained FCN network using the CRMS (Coastwide Reference Monitoring System) data set for surface water mapping. The CRMS provides color infrared aerial photos and ground truth maps for the monitoring and restoration of wetlands in Louisiana, USA. To effectively learn the characteristics of surface water, we used pre-trained the DeepWaterMap network, which classifies water, land, snow, ice, clouds, and shadows using Landsat satellite images. Furthermore, the DeepWaterMap network was fine-tuned for the CRMS data set using two classes: water and land. The fine-tuned network finally classifies surface water without any additional learning process. The experimental results show that the proposed method enables high-quality surface mapping from CRMS data set and show the suitability of pre-trained FCN networks using remote sensing data for surface water mapping.
The smart substation is the heart of a transmission system, which is particularly emphasized as the most significant composition of smart grids in China. In order to assess the functionality performance of substation technologies, this paper presents methods used to identify the most promising solutions for smart substation design and to evaluate the technical levels of available technologies. The multi-index optimization model is presented to address the issue of smart substation planning. A mathematical model of the planning decision problem is established with multiple objectives consisting of economic, reliability, and green key indices, and many kinds of concerns including physical and environmentally friendly operations are formulated as a set of constraints. With respect to the assessment of the technical level regarding integration of advanced technologies into a substation, a modified grey whitenization weight function is adopted to structure a novel grey clustering method. The proposed grey clustering approach is used to overcome the difficulty of insufficient quantitative assessment capacity for traditional methods. The evaluation of technical effects provides the classification definition for the development phase and the maturity level of the smart substation. The effectiveness of the proposed approaches in planning decision-making and evaluation of construction efforts is demonstrated with case studies involving the actual smart substation projects of Wenchongkou substation in China Southern Power Grid (CSG) and Mengzi substation in State Grid Corporation of China (SGCC).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.