• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.035 seconds

Active Sonar Target Detection Using Fractional Fourier Transform (Fractional 푸리에 변환을 이용한 능동소나 표적탐지)

  • Baek, Jongdae;Seok, Jongwon;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2016
  • Many studies in detection and classification of the targets in the underwater environments have been conducted for military purposes, as well as for non-military purpose. Due to the complicated characteristics of underwater acoustic signal reflecting multipath environments and spatio-temporal varying characteristics, active sonar target detection technique has been considered as a difficult technique. In this paper, we describe the basic concept of Fractional Fourier transform and optimal transform order. Then we analyze the relationship between time-frequency characteristics of an LFM signal and its spectrum using Fractional Fourier transform. Based on the analysis results, we present active sonar target detection method. To verify the performance of proposed methods, we compared the results with conventional FFT-based matched filter. The experimental results demonstrate the superiority of the proposed method compared to the conventional method in the aspect of AUC(Area Under the ROC Curve).

Moment-based Fast CU Size Decision Algorithm for HEVC Intra Coding (HEVC 인트라 코딩을 위한 모멘트 기반 고속 CU크기 결정 방법)

  • Kim, Yu-Seon;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.514-521
    • /
    • 2016
  • The High Efficiency Video Coding (HEVC) standard provides superior coding efficiency by utilizing highly flexible block structure and more diverse coding modes. However, rate-distortion optimization (RDO) process for the decision of optimal block size and prediction mode requires excessive computational complexity. To alleviate the computation load, this paper proposes a new moment-based fast CU size decision algorithm for intra coding in HEVC. In the proposed method, moment values are computed in each CU block to estimate the texture complexity of the block from which the decision on an additional CU splitting procedure is performed. Unlike conventional methods which are mostly variance-based approaches, the proposed method incorporates the third-order moments of the CU block in the design of the fast CU size decision algorithm, which enables an elaborate classification of CU types and thus improves the RD-performance of the fast algorithm. Experimental results show that the proposed method saves 32% encoding time with 1.1% increase of BD-rate compared to HM-10.0, and 4.2% decrease of BD-rate compared to the conventional variance-based fast algorithm.

Fast Mode Decision for H.264/AVC P Slices Using Classification of SKIP Mode Distortion (SKIP 모드 왜곡의 구분을 통한 H.264/AVC 부호화 P 슬라이스에서의 고속 모드 결정 방법)

  • You, Jong-Min;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • H.264/AVC, a recently developed video compression standard, is used for various applications because of its high coding efficiency. Variable block mode plays important role in the high coding efficiency of H.264/AVC but involves significant computations to select the optimal mode. In this paper, a fast mode decision method for H.264/AVC P slices is presented. To reduce computations for mode decision, the proposed mode decision method skips the mode decision processes for small partition modes using distortions of SKIP mode and intra16x16 mode. The experimental results show that the proposed method can reduce encoding time up to 66.41% while maintaining compression efficiency.

A Novel Technique of Hand-Sewn Purse-String Suturing by Double Ligation Method (DLM) for Intracorporeal Circular Esophagojejunostomy

  • Takayama, Yuichi;Kaneoka, Yuji;Maeda, Atsuyuki;Fukami, Yasuyuki;Takahashi, Takamasa;Uji, Masahito
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.290-300
    • /
    • 2019
  • Purpose: The optimal method for intracorporeal esophagojejunostomy remains unclear because a purse-string suture for fixing the anvil into the esophagus is difficult to perform with a laparoscopic approach. Therefore, this study aimed to evaluate our novel technique to fix the anvil into the esophagus. Materials and Methods: This retrospective study included 202 patients who were treated at our institution with an intracorporeal circular esophagojejunostomy in a laparoscopy-assisted total gastrectomy with a Roux-en-Y reconstruction (166 cases) or a laparoscopy-assisted proximal gastrectomy with jejunal interposition (36 cases). After incising 3/4 of the esophageal wall, a hand-sewn purse-string suture was placed on the esophagus. Next, the anvil head of a circular stapler was introduced into the esophagus. Finally, the circular esophagojejunostomy was performed laparoscopically. The clinical characteristics and surgical outcomes were evaluated and compared with those of other methods. Results: The average operation time was 200.3 minutes. The average hand-sewn purse-string suturing time was 6.4 minutes. The overall incidence of postoperative complications (Clavien-Dindo classification grade ${\geq}II$) was 26%. The number of patients with an anastomotic leakage and stenosis at the esophagojejunostomy site were 4 (2.0%) and 12 (6.0%), respectively. All patients with stenosis were successfully treated by endoscopic balloon dilatation. There was no mortality. Regarding the materials and devices for anvil fixation, only 1 absorbable thread was needed. Conclusions: Our procedure for hand-sewn purse-string suturing with the double ligation method is simple and safe.

An Integrated Model based on Genetic Algorithms for Implementing Cost-Effective Intelligent Intrusion Detection Systems (비용효율적 지능형 침입탐지시스템 구현을 위한 유전자 알고리즘 기반 통합 모형)

  • Lee, Hyeon-Uk;Kim, Ji-Hun;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.125-141
    • /
    • 2012
  • These days, the malicious attacks and hacks on the networked systems are dramatically increasing, and the patterns of them are changing rapidly. Consequently, it becomes more important to appropriately handle these malicious attacks and hacks, and there exist sufficient interests and demand in effective network security systems just like intrusion detection systems. Intrusion detection systems are the network security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. Conventional intrusion detection systems have generally been designed using the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. However, they cannot handle new or unknown patterns of the network attacks, although they perform very well under the normal situation. As a result, recent studies on intrusion detection systems use artificial intelligence techniques, which can proactively respond to the unknown threats. For a long time, researchers have adopted and tested various kinds of artificial intelligence techniques such as artificial neural networks, decision trees, and support vector machines to detect intrusions on the network. However, most of them have just applied these techniques singularly, even though combining the techniques may lead to better detection. With this reason, we propose a new integrated model for intrusion detection. Our model is designed to combine prediction results of four different binary classification models-logistic regression (LOGIT), decision trees (DT), artificial neural networks (ANN), and support vector machines (SVM), which may be complementary to each other. As a tool for finding optimal combining weights, genetic algorithms (GA) are used. Our proposed model is designed to be built in two steps. At the first step, the optimal integration model whose prediction error (i.e. erroneous classification rate) is the least is generated. After that, in the second step, it explores the optimal classification threshold for determining intrusions, which minimizes the total misclassification cost. To calculate the total misclassification cost of intrusion detection system, we need to understand its asymmetric error cost scheme. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, total misclassification cost is more affected by FNE rather than FPE. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 10,000 samples from them by using random sampling method. Also, we compared the results from our model with the results from single techniques to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell R4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on GA outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that the proposed model outperformed all the other comparative models in the total misclassification cost perspective. Consequently, it is expected that our study may contribute to build cost-effective intelligent intrusion detection systems.

Terms Based Sentiment Classification for Online Review Using Support Vector Machine (Support Vector Machine을 이용한 온라인 리뷰의 용어기반 감성분류모형)

  • Lee, Taewon;Hong, Taeho
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • Customer reviews which include subjective opinions for the product or service in online store have been generated rapidly and their influence on customers has become immense due to the widespread usage of SNS. In addition, a number of studies have focused on opinion mining to analyze the positive and negative opinions and get a better solution for customer support and sales. It is very important to select the key terms which reflected the customers' sentiment on the reviews for opinion mining. We proposed a document-level terms-based sentiment classification model by select in the optimal terms with part of speech tag. SVMs (Support vector machines) are utilized to build a predictor for opinion mining and we used the combination of POS tag and four terms extraction methods for the feature selection of SVM. To validate the proposed opinion mining model, we applied it to the customer reviews on Amazon. We eliminated the unmeaning terms known as the stopwords and extracted the useful terms by using part of speech tagging approach after crawling 80,000 reviews. The extracted terms gained from document frequency, TF-IDF, information gain, chi-squared statistic were ranked and 20 ranked terms were used to the feature of SVM model. Our experimental results show that the performance of SVM model with four POS tags is superior to the benchmarked model, which are built by extracting only adjective terms. In addition, the SVM model based on Chi-squared statistic for opinion mining shows the most superior performance among SVM models with 4 different kinds of terms extraction method. Our proposed opinion mining model is expected to improve customer service and gain competitive advantage in online store.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

Fundamental Research for Establishing a Job-Exposure Matrix (JEM) for Farmers Related to Insecticides (I): Rice Cultivation (농약물질 중 살충제 관련 농업 종사자들의 직무 -노출 매트릭스 구축을 위한 기초 자료 조사 연구 (I) : 수도작)

  • Kim, Ki-Youn;Cho, Man-Su;Lee, Sang-Gil;Kang, Dong-Mug;Kim, Jong-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.59-64
    • /
    • 2014
  • Objectives: The principal aim of this study is to investigate and analyze domestic usage amounts of insecticide in rice cultivation in order to provide fundamental data for establishing a job-exposure matrix(JEM) related to farmers working with agricultural insecticides. Materials and Methods: An investigation of domestic usage amounts of insecticides rice cultivation was performed through two methods. The first method utilized information on agricultural pesticides published annually by the Korea Crop Protection Association(KCPA). The second method made use of area of cultivation of rice as officially determined by Statistics Korea(SK). An estimation of domestic usage of insecticides in rice cultivation through the second method was determined by multiplying the total cultivation area of rice($m^2$) by the optimal spray volume of insecticides for rice cultivation per unit of cultivation area($kg/m^2$). Results: As a result of the analysis of public data regarding insecticides in rice cultivation, it was found that the domestic usage amount has decreased sharply from the first year of market sales(1969) to the final data year(2012). There is little difference in the annual usage trend of insecticides in rice cultivation between shipment and estimation. Also, the annual usage trends of insecticides in rice cultivation based on regional classification were nearly similar to those based on the overall aspect. Conclusions: The region which used the largest volume of insecticide in rice cultivation in Korea was the Jeolla Provinces, followed by the Gyeonsang Provinces, the Chungcheong Provinces, Seoul/Gyeonggi Province, Gangwon Province and Jeju Province. Substantially, the mean ratio of usage amounts of insecticide based on shipments and those based on estimation by cultivation area was $96{\pm}29%$, which indicates that the domestic usage amount of insecticide for rice cultivation corresponded to the optimal spray standard per unit area.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Performance Improvement in Speech Recognition by Weighting HMM Likelihood (은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상)

  • 권태희;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • In this paper, assuming that the score of speech utterance is the product of HMM log likelihood and HMM weight, we propose a new method that HMM weights are adapted iteratively like the general MCE training. The proposed method adjusts HMM weights for better performance using delta coefficient defined in terms of misclassification measure. Therefore, the parameter estimation and the Viterbi algorithms of conventional 1:.um can be easily applied to the proposed model by constraining the sum of HMM weights to the number of HMMs in an HMM set. Comparing with the general segmental MCE training approach, computing time decreases by reducing the number of parameters to estimate and avoiding gradient calculation through the optimal state sequence. To evaluate the performance of HMM-based speech recognizer by weighting HMM likelihood, we perform Korean isolated digit recognition experiments. The experimental results show better performance than the MCE algorithm with state weighting.