• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.028 seconds

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

Optimization-Based Pattern Generation for LAD (최적화에 기반을 둔 LAD의 패턴 생성 기법)

  • Jang, In-Yong;Ryoo, Hong-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.11-18
    • /
    • 2006
  • The logical analysis of data(LAD) is a Boolean-logic based data mining tool. A critical step in analyzing data by LAD is the pattern generation stage where useful knowledge and hidden structural information in data is discovered in the form of patterns. A conventional method for pattern generation in LAD is based on term enumeration that renders the generation of higher degree patterns practically impossible. In this paper, we present a novel optimization-based pattern generation methodology and propose two mathematical programming models, a mixed 0-1 integer and linear programming (MILP) formulation and a well-studied set covering problem (SCP) formulation for the generation of optimal and heuristic patterns, respectively. With benchmark datasets, we demonstrate the effectiveness of our models by automatically generating with ease patterns of high complexity that cannot be generated with the conventional approach.

  • PDF

Development of the Power System Fault Diagnostic Algorithm for the Proton Accelerator Research Center of PEFP (양성자가속기 연구센터 전력계통 고장진단 알고리즘 개발)

  • Mun, Kyeong-Jun;Jeon, Gye-Po;Lee, Seok-Ki;Kim, Jun-Yeon;Jung, W.;Yoo, Suk-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.685-686
    • /
    • 2007
  • This paper presents an application of power system fault diagnostic algorithm for the PEFP Proton Accelerator Research Center using neural network. Proposed fault diagnostic system is constructed by the radial basis function (RBF) neural network because it has the capabilities of the pattern classification and function approximation of any nonlinear function. Proposed system identifies faulted section in the power system based on information about the operation of protection devices such as relays and circuit breakers. In this paper, parameters of the RBF neural networks are tuned by the GA-TS algorithm, which has the global optimal solution searching capabilities. To show the validity of the proposed method, proposed algorithm has been tested with a practical power system in Proton Accelerator Research Center of PEFP.

  • PDF

Definitions of groove and hollowness of the infraorbital region and clinical treatment using soft-tissue filler

  • Lee, Ji-Hyun;Hong, Giwoong
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • Clarification is needed regarding the definitions and classification of groove and hollowness of the infraorbital region depending on the cause, anatomical characteristics, and appearance. Grooves in the infraorbital region can be classified as nasojugal grooves (or folds), tear trough deformities, and palpebromalar grooves; these can be differentiated based on anatomical characteristics. They are caused by the herniation of intraorbital fat, atrophy of the skin and subcutaneous fat, contraction of the orbital part of the orbicularis oculi muscle or squinting, and malar bone resorption. Safe and successful treatment requires an optimal choice of filler and treatment method. The choice between a cannula and needle depends on various factors; a needle is better for injections into a subdermal area in a relatively safe plane, while a cannula is recommended for avoiding vascular compromise when injecting filler into a deep fat layer and releasing fibrotic ligamentous structures. The injection of a soft-tissue filler into the subcutaneous fat tissue is recommended for treating mild indentations around the orbital rim and nasojugal region. Reducing the tethering effect of ligamentous structures by undermining using a cannula prior to the filler injection is recommended for treating relatively deep and fine indentations. The treatment of mild prolapse of the intraorbital septal fat or broad flattening of the infraorbital region can be improved by restoring the volume deficiency using a relatively firm filler.

Application of a support vector machine for prediction of piping and internal stability of soils

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.493-502
    • /
    • 2019
  • Internal stability is an important safety issue for levees, embankments, and other earthen structures. Since a large part of the world's population lives near oceans, lakes and rivers, floods resulting from breaching of dams can lead to devastating disasters with tremendous loss of life and property, especially in densely populated areas. There are some main factors that affect the internal stability of dams, levees and other earthen structures, such as the erodibility of the soil, the water velocity inside the soil mass and the geometry of the earthen structure, etc. Thus, the mechanism of internal erosion and stability of soils is very complicated and it is vital to investigate the assessment methods of internal stability of soils in embankment dams and their foundations. This paper presents an improved support vector machine (SVM) model to predict the internal stability of soils. The grid search algorithm (GSA) is employed to find the optimal parameters of SVM firstly, and then the cross - validation (CV) method is employed to estimate the classification accuracy of the GSA-SVM model. Two examples of internal stability of soils are presented to validate the predictive capability of the proposed GSA-SVM model. In addition to verify the effectiveness of the proposed GSA-SVM model, the predictions from the proposed GSA-SVM model were compared with those from the traditional back propagation neural network (BPNN) model. The results showed that the proposed GSA-SVM model is a feasible and efficient tool for assessing the internal stability of soils with high accuracy.

The Steel Coil Loading and Placement Automation System Development (철강 코일의 선적 및 배치 자동화 시스템 개발)

  • Sang-Hyun, Kim;Woo, Lee;Seung-Hong, Oh;Ju-Wan, Lee;Min-Woo, Son;Won-Jung, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1259-1266
    • /
    • 2022
  • Stowage planning is an essential process for safe loading by establishing, agreeing on, and systematically implementing a reasonable loading and securing method based on information on cargo, loading/unloading and the ship. In addition, depending on the plan, there may be a difference of about 14% or more in the loading amount per ship, which causes a tolerance rate and leads to an increase in sea freight charges. In this study, work environment and process standards for steel coil shipment, and classification regulations and guidelines related to steel coil shipment were analyzed. In addition, we developed a steel coil loading and placement automation system that derives an optimal loading plan through performance data-based shipping balancing and stability analysis.

Relevance of the Watson-Jones anterolateral approach in the management of Pipkin type II fracture-dislocation: a case report and literature review

  • Nazim Sifi;Ryad Bouguenna
    • Journal of Trauma and Injury
    • /
    • v.37 no.2
    • /
    • pp.161-165
    • /
    • 2024
  • Femoral head fractures with associated hip dislocations substantially impact the functional prognosis of the hip joint and present a surgical challenge. The surgeon must select a safe approach that enables osteosynthesis of the fracture while also preserving the vascularization of the femoral head. The optimal surgical approach for these injuries remains a topic of debate. A 44-year-old woman was involved in a road traffic accident, which resulted in a posterior iliac dislocation of the hip associated with a Pipkin type II fracture of the femoral head. Given the size of the detached fragment and the risk of incarceration preventing reduction, we opted against attempting external orthopedic reduction maneuvers. Instead, we chose to perform open reduction and internal fixation using the Watson-Jones anterolateral approach. This involved navigating between the retracted tensor fascia lata muscle, positioned medially, and the gluteus medius and minimus muscles, situated laterally. During radiological and clinical follow-up visits extending to postoperative month 15, the patient showed no signs of avascular necrosis of the femoral head, progression toward coxarthrosis, or heterotopic ossification. The Watson-Jones anterolateral approach is a straightforward intermuscular and internervous surgical procedure. This method provides excellent exposure of the femoral head, preserves its primary vascularization, allows for anterior dislocation, and facilitates the anatomical reduction and fixation of the fracture.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

A Comparative Study on Prediction Performance of the Bankruptcy Prediction Models for General Contractors in Korea Construction Industry

  • Seung-Kyu Yoo;Jae-Kyu Choi;Ju-Hyung Kim;Jae-Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.432-438
    • /
    • 2011
  • The purpose of the present thesis is to develop bankruptcy prediction models capable of being applied to the Korean construction industry and to deduce an optimal model through comparative evaluation of final developed models. A study population was selected as general contractors in the Korean construction industry. In order to ease the sample securing and reliability of data, it was limited to general contractors receiving external audit from the government. The study samples are divided into a bankrupt company group and a non-bankrupt company group. The bankruptcy, insolvency, declaration of insolvency, workout and corporate reorganization were used as selection criteria of a bankrupt company. A company that is not included in the selection criteria of the bankrupt company group was selected as a non-bankrupt company. Accordingly, the study sample is composed of a total of 112 samples and is composed of 48 bankrupt companies and 64 non-bankrupt companies. A financial ratio was used as early predictors for development of an estimation model. A total of 90 financial ratios were used and were divided into growth, profitability, productivity and added value. The MDA (Multivariate Discriminant Analysis) model and BLRA (Binary Logistic Regression Analysis) model were used for development of bankruptcy prediction models. The MDA model is an analysis method often used in the past bankruptcy prediction literature, and the BLRA is an analysis method capable of avoiding equal variance assumption. The stepwise (MDA) and forward stepwise method (BLRA) were used for selection of predictor variables in case of model construction. Twenty two variables were finally used in MDA and BLRA models according to timing of bankruptcy. The ROC-Curve Analysis and Classification Analysis were used for analysis of prediction performance of estimation models. The correct classification rate of an individual bankruptcy prediction model is as follows: 1) one year ago before the event of bankruptcy (MDA: 83.04%, BLRA: 93.75%); 2) two years ago before the event of bankruptcy (MDA: 77.68%, BLRA: 78.57%); 3) 3 years ago before the event of bankruptcy (MDA: 84.82%, BLRA: 91.96%). The AUC (Area Under Curve) of an individual bankruptcy prediction model is as follows. : 1) one year ago before the event of bankruptcy (MDA: 0.933, BLRA: 0.978); 2) two years ago before the event of bankruptcy (MDA: 0.852, BLRA: 0.875); 3) 3 years ago before the event of bankruptcy (MDA: 0.938, BLRA: 0.975). As a result of the present research, accuracy of the BLRA model is higher than the MDA model and its prediction performance is improved.

  • PDF