• Title/Summary/Keyword: optimal classification method

Search Result 368, Processing Time 0.027 seconds

A Study of optimized clustering method based on SOM for CRM

  • Jong T. Rhee;Lee, Joon.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.464-469
    • /
    • 2001
  • CRM(Customer Relationship Management : CRM) is an advanced marketing supporting system which analyze customers\` transaction data and classify or target customer groups to effectively increase market share and profit. Many engines were developed to implements the function and those for classification and clustering are considered core ones. In this study, an improved clustering method based on SOM(Self-Organizing Maps : SOM) is proposed. The proposed clustering method finds the optimal number of clusters so that the effectiveness of clustering is increased. It considers all the data types existing in CRM data warehouses. In particular, and adaptive algorithm where the concepts of degeneration and fusion are applied to find optimal number of clusters. The feasibility and efficiency of the proposed method are demonstrated through simulation with simplified data of customers.

  • PDF

Detection of Trees with Pine Wilt Disease Using Object-based Classification Method

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In this study, regions infected by pine wilt disease were extracted by using object-based classification method (OB-infected region), and the characteristics of special distribution about OB-infected region were figured out. Scale 24, Shape 0.1, Color 0.9, Compactness 0.5, and Smoothness 0.5 was selected as the objected-based, optimal weighted value of OB-infected region classification. The total accuracy of classification was high with 99% and Kappa coefficient was also high with 0.97. The area of OB-infected region was approximately 90 ha, 16% of the total area. The OB-infected region in Age class V and VI was intensively distributed with 97% of the total. Also, The OB-infected region in Middle and Large DBH class was intensively distributed with 99% of the total. In terms of the topographic characteristics of OB-infected region, the damages occurred approximately 86% below the altitude of 200 m, and occurred 91% with a slope less than 10 degree. The damage occurred a lot in low hilly mountain and undulating slope. In addition, the accessibility to road and residential area from OB-infected region was less than 300 m in large part. Overall, it was figured out that artificial effect is stronger than natural effect with regard to the spread of pine wilt disease.

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

Double-Bagging Ensemble Using WAVE

  • Kim, Ahhyoun;Kim, Minji;Kim, Hyunjoong
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.411-422
    • /
    • 2014
  • A classification ensemble method aggregates different classifiers obtained from training data to classify new data points. Voting algorithms are typical tools to summarize the outputs of each classifier in an ensemble. WAVE, proposed by Kim et al. (2011), is a new weight-adjusted voting algorithm for ensembles of classifiers with an optimal weight vector. In this study, when constructing an ensemble, we applied the WAVE algorithm on the double-bagging method (Hothorn and Lausen, 2003) to observe if any significant improvement can be achieved on performance. The results showed that double-bagging using WAVE algorithm performs better than other ensemble methods that employ plurality voting. In addition, double-bagging with WAVE algorithm is comparable with the random forest ensemble method when the ensemble size is large.

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

Implementation of Elbow Method to improve the Gases Classification Performance based on the RBFN-NSG Algorithm

  • Jeon, Jin-Young;Choi, Jang-Sik;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.431-434
    • /
    • 2016
  • Currently, the radial basis function network (RBFN) and various other neural networks are employed to classify gases using chemical sensors arrays, and their performance is steadily improving. In particular, the identification performance of the RBFN algorithm is being improved by optimizing parameters such as the center, width, and weight, and improved algorithms such as the radial basis function network-stochastic gradient (RBFN-SG) and radial basis function network-normalized stochastic gradient (RBFN-NSG) have been announced. In this study, we optimized the number of centers, which is one of the parameters of the RBFN-NSG algorithm, and observed the change in the identification performance. For the experiment, repeated measurement data of 8 samples were used, and the elbow method was applied to determine the optimal number of centers for each sample of input data. The experiment was carried out in two cases(the only one center per sample and the optimal number of centers obtained by elbow method), and the experimental results were compared using the mean square error (MSE). From the results of the experiments, we observed that the case having an optimal number of centers, obtained using the elbow method, showed a better identification performance than that without any optimization.

Simultaneous Optimization of Gene Selection and Tumor Classification Using Intelligent Genetic Algorithm and Support Vector Machine

  • Huang, Hui-Ling;Ho, Shinn-Ying
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.57-62
    • /
    • 2005
  • Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.

  • PDF

A Study on Image Classification using Hybrid Method (하이브리드 기법을 이용한 영상 식별 연구)

  • Park, Sang-Sung;Jung, Gwi-Im;Jang, Dong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.79-86
    • /
    • 2006
  • Classification technology is essential for fast retrieval in large multi-media database. This paper proposes a combining GA(Genetic Algorithm) and SVM(Support Vector Machine) model to fast retrieval. We used color and texture as feature vectors. We improved the retrieval accuracy by using proposed model which retrieves an optimal feature vector set in extracted feature vector sets. The first performance test was executed for the performance of color, texture and the feature vector combined with color and texture. The second performance test, was executed for performance of SVM and proposed algorithm. The results of the experiment, using the feature vector combined color and texture showed a good Performance than a single feature vector and the proposed algorithm using hybrid method also showed a good performance than SVM algorithm.

  • PDF

Multi-Criteria ABC Inventory Classification Using the Cross-Efficiency Method in DEA (DEA의 교차효율성을 활용한 다기준 ABC 재고 분류 방법 연구)

  • Park, Jae-Hun;Bae, Hye-Rim;Lim, Sung-Mook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.358-366
    • /
    • 2011
  • Multi-criteria ABC inventory classification, which aims to classify inventory items by considering more than one criterion, is one of the most widely employed techniques for inventory control. The weighted linear optimization (WLO) model proposed by Ramanathan (2006) solves the problem of multi-criteria ABC inventory classification by generating a set of criterion weights for each inventory item and assigning a normalized score to the item for ABC analysis. However, the WLO model has some limitations. First, many inventory items can share the same optimal score, which can hinder a precise classification of inventory items. Second, the model allows too much flexibility in weighting multiple criteria; each item is allowed to choose its own weights so that it can maximize its score. As a result, if an item dominates the others in terms of a certain criterion, it may be classified into a higher class regardless of other criteria by assigning an overwhelming weight to the criterion. Consequently, an item with a high value in an unimportant criterion and low values in others may be inappropriately classified as class A, leading to an inaccurate classification of inventory items. To overcome these shortcomings, we extend the WLO model by using the cross-efficiency method in data envelopment analysis. We claim that the proposed model can provide a more reasonable and accurate classification of inventory items by mitigating the adverse effect of flexibility in the choice of weights and yielding a unique ordering of inventory items.