• Title/Summary/Keyword: optimal beamforming

Search Result 90, Processing Time 0.021 seconds

A Relay Selection and Power Allocation Scheme for Cooperative Wireless Sensor Networks

  • Qian, Mujun;Liu, Chen;Fu, Youhua;Zhu, Weiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1390-1405
    • /
    • 2014
  • This paper investigates optimal relay selection and power allocation under an aggregate power constraint for cooperative wireless sensor networks assisted by amplify-and-forward relay nodes. By considering both transmission power and circuit power consumptions, the received signal-to-noise ratio (SNR) at the destination node is calculated, based on which, a relay selection and power allocation scheme is developed. The core idea is to adaptively adjust the selected relays and their transmission power to maximize the received SNR according to the channel state information. The proposed scheme is derived by recasting the optimization problem into a three-layered problem-determining the number of relays to be activated, selecting the active relays, and performing power allocation among the selected relays. Monte Carlo simulation results demonstrate that the proposed scheme provides a higher received SNR and a lower bit error rate as compared to the average power allocation scheme.

FPGA-Based Low-Power and Low-Cost Portable Beamformer Design (FPGA 기반 저전력 및 저비용 휴대용 빔포머 설계)

  • Jeong, GabJoong;Park, CheolYoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this paper, we develop a beamforming front end platform with pipeline circuit configuration method that can apply various clinical diagnostic applications of ultrasound image technology. Hardware design targets compression applications as well as scalable applications where power, integration levels and replication possibilities are important. Firmware design was implemented to achieve optimal FPGA parallel processing level by constructing new IP and system-oriented design environment to accelerate design productivity with maximum productivity improvement using Vivado HLS tool, which is a next generation high level synthesis tool. Former supports the high-speed management function of scan data that can create an image area arbitrarily and can be appropriately corrected and supplemented when reconfiguring or changing system specifications in the future.

Optimal Many-core Processor Architecture for Different Ultrasonic Image Resolutions (초음파 영상선호의 크기 변화에 따른 최적의 매니코어 프로세서 구조)

  • Kang, Seong-Mo;Kim, Jong-Myon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • This paper proposes an optima] many-core processor architecture that meets the requirements of low power and high performance for different ultrasonic image resolutions in hand-held ultrasonic devices. To identify the optimal many-core architecture, seven different PE configurations are simulated for processing ultrasonic images in terms of execution performance and energy consumption. Experimental results indicate that the highest energy efficiencies are achieved at PEs=1,024, 64, and 256 for ultrasonic images at $256{\times}256$, $320{\times}240$, and $800{\times}480$ resolutions, respectively. In addition, the maximum area efficiencies are obtained at PEs=256 (for $256{\times}256$ and $800{\times}480$ image resolutions) and 64 (for $320{\times}240$ image resolution).

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

SIC-Aware Relay Transceiving Filter Design for Multiuser Two-way Relaying Systems (다중 사용자 양방향 릴레이 시스템을 위한 자가 간섭 소거 인지 릴레이 송수신 필터 설계)

  • Park, Jin-Bae;Wang, Jin-Soo;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.64-72
    • /
    • 2012
  • We consider multiuser multiple antenna two-way relaying systems in which all users exchange their data with their counterparts with the help of a relay. The systems complete all data exchanges in two time phases called multiple access phase and broadcasting phase for spectral efficiency and therby require an effective scheme reducing self-interference (SI) and multiuser interference (MUI). Different from the conventional scheme suppressing both SI and MUI at the relay, the proposed scheme adopts SI cancelation (SIC) at the users and renders the relay to suppress the MUI mainly considering the SIC output. We analyze the symbol error rate (SER) and the achievable diversity order of the proposed scheme when the multiple access phase is dominant in the performance and obtain simulation results on the SER and the sum rate under various conditions. The results show that the proposed scheme improves the symbol error rate and the sum rate remarkably at the cost of complexity increase.

Linearized Power Method Algorithm for Adaptive Beamforming of Smart Antenna System in IS-2000 1X CDMA Environments (IS-2000 1X CDMA 환경에서 스마트 안테나 시스템의 적응 빔형성을 위한 선형화된 멱승법 알고리즘)

  • 김민수;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1C
    • /
    • pp.72-80
    • /
    • 2003
  • This paper proposed the method of finding optimal weight vectors for enhancing the performance of an adaptive array antenna system by adopting a novel beam-forming algorithm in CDMA (code division multiple access) channel. This algorithm is a liberalized power method, based on power method, with the total computational load, O(4N). Where, N denotes the number of antenna elements. The performance of the proposed algorithm is shown in terms of SER (symbol error rates), allowable capacity, and the convergence characteristic in IS2000 1X CDMA channel. As a result of simulations, the adaptive way antenna system allows 6-10 times more users than the conventional one in a cell of a base station. Furthermore, the proposed algorithm shows superior performance to the conventional one regarding symbol error rates, converging characteristics, and computational load.

Adaptive Beamforming Technique of Eigen-space Smart Antenna System (고유공간 스마트 안테나 시스템의 적응 빔형성 기술)

  • 김민수;이원철;최승원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.989-997
    • /
    • 2002
  • This paper presents a new technique that enhances the performance of the smart antenna system especially in signal environments of wide angular spread by adopting a weight vector obtained from two eigenvectors of theautocovariance matrix of the received data. While the conventional beamformingtechnique employs only one eigenvector corresponding to the largest eigenvalue, the proposed algorithm uses two eigenvectors corresponding to the largest and second largest eigenvalue in such a way that it can be robust enough to the signal environments of wide angular spread. An efficient adaptive procedure is shown to verify that the optimal weight vector consisting of the two eigenvectors is obtained with a reasonable complexity(3.5$N_2$+ 12N) and accuracy. it is also shown in this paper that the numerical results obtained from the proposed adaptive procedure well agree with those obtained from a commercial tool computing the eigen-function of MATLABTM.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

An Efficient Symbol Timing Synchronization Scheme for IEEE 802.11n MIMO-OFDM based WLAN Systems (IEEE 802.11n MIMO-OFDM 기반 무선 LAN 시스템을 위한 효율적인 심볼 동기 방법)

  • Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.95-103
    • /
    • 2009
  • An efficient symbol time synchronization scheme for IEEE 802.11n MIMO-OFDM based WLAN systems using cyclic shift diversity (CSD) preamble is proposed. CSD is used to prevent unintentional beamforming when the same preamble signal is transmitted through transmit antennas. However, it is difficult to find a proper starting-point of the OFDM symbol with the conventional algorithms because of time offset by multi-peaks which are result from cross-correlation of received CSD preamble with a known short training symbol. In addition, the performance of symbol time sync. is affected by AGC and packet detection position. In this paper, an optimal symbol time synch. algorithm which is composed of the boundary detection scheme between LTS and OFDM symbols, the verification scheme for enhancement of boundary detection accuracy, and the SNR-varying threshold estimation scheme is proposed. Simulation result show that the proposed algorithm has performance gains of 4.3dB in SNR compared to the conventional algorithms at the rate of 1% sync. failure probability for $2{\times}2$ MIMO-OFDM system and 18dB at 0.1% when maximum frequency offset exists. It also can be applied to $4{\times}4$ MIMO-OFDM system without any modification. Hence, it is very suitable for MIMO-OFDM WLAN systems using CSD preamble.