• Title/Summary/Keyword: optimal aggregation interval size of data

Search Result 3, Processing Time 0.018 seconds

Determination of the Optimal Aggregation Interval Size of Individual Vehicle Travel Times Collected by DSRC in Interrupted Traffic Flow Section of National Highway (국도 단속류 구간에서 DSRC를 활용하여 수집한 개별차량 통행시간의 최적 수집 간격 결정 연구)

  • PARK, Hyunsuk;KIM, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.63-78
    • /
    • 2017
  • The purpose of this study is to determine the optimal aggregation interval to increase the reliability when estimating representative value of individual vehicle travel time collected by DSRC equipment in interrupted traffic flow section in National Highway. For this, we use the bimodal asymmetric distribution data, which is the distribution of the most representative individual vehicle travel time collected in the interrupted traffic flow section, and estimate the MSE(Mean Square Error) according to the variation of the aggregation interval of individual vehicle travel time, and determine the optimal aggregation interval. The estimation equation for the MSE estimation utilizes the maximum estimation error equation of t-distribution that can be used in asymmetric distribution. For the analysis of optimal aggregation interval size, the aggregation interval size of individual vehicle travel time was only 3 minutes or more apart from the aggregation interval size of 1-2 minutes in which the collection of data was normally lost due to the signal stop in the interrupted traffic flow section. The aggregation interval that causes the missing part in the data collection causes another error in the missing data correction process and is excluded. As a result, the optimal aggregation interval for the minimum MSE was 3~5 minutes. Considering both the efficiency of the system operation and the improvement of the reliability of calculation of the travel time, it is effective to operate the basic aggregation interval as 5 minutes as usual and to reduce the aggregation interval to 3 minutes in case of congestion.

Investigating Optimal Aggregation Interval Size of Loop Detector Data for Travel Time Estimation and Predicition (통행시간 추정 및 예측을 위한 루프검지기 자료의 최적 집계간격 결정)

  • Yoo, So-Young;Rho, Jeong-Hyun;Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.109-120
    • /
    • 2004
  • Since the late of 1990, there have been number of studies on the required number of probe vehicles and/or optimal aggregation interval sizes for travel time estimation and forecasting. However, in general one to five minutes are used as aggregation intervals for the travel time estimation intervals for the travel time estimation and/or forecasting of loop detector system without a reasonable validation. The objective of this study is to deveop models for identifying optimal aggregation interval sizes of loop detector data for travel time estimation and prediction. This study developed Cross Valiated Mean Square Error (CVMSE) model for the link and route travel time forecasting, The developed models were applied to the loop detector data of Kyeongbu expressway. It was found that the optimal aggregation sizes for the travel time estimation and forecasting are three to five minutes and ten to twenty minutes, respectively.

Determining Optimal Aggregation Interval Size for Travel Time Estimation and Forecasting with Statistical Models (통행시간 산정 및 예측을 위한 최적 집계시간간격 결정에 관한 연구)

  • Park, Dong-Joo
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.55-76
    • /
    • 2000
  • We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.

  • PDF